Skip to main content
Log in

Conserved Amino Acid Residues that Affect Structural Stability of Candida boidinii Formate Dehydrogenase

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

The NAD+-dependent formate dehydrogenase (FDH; EC 1.2.1.2) from Candida boidinii (CboFDH) has been extensively used in NAD(H)-dependent industrial biocatalysis as well as in the production of renewable fuels and chemicals from carbon dioxide. In the present work, the effect of amino acid residues Phe285, Gln287, and His311 on structural stability was investigated by site-directed mutagenesis. The wild-type and mutant enzymes (Gln287Glu, His311Gln, and Phe285Thr/His311Gln) were cloned and expressed in Escherichia coli. Circular dichroism (CD) spectroscopy was used to determine the effect of each mutation on thermostability. The results showed the decisive roles of Phe285, Gln287, and His311 on enhancing the enzyme’s thermostability. The melting temperatures for the wild-type and the mutant enzymes Gln287Glu, His311Gln, and Phe285Thr/His311Gln were 64, 70, 77, and 73 °C, respectively. The effects of pH and temperature on catalytic activity of the wild-type and mutant enzymes were also investigated. Interestingly, the mutant enzyme His311Gln exhibits a large shift of pH optimum at the basic pH range (1 pH unit) and substantial increase of the optimum temperature (25 °C). The present work supports the multifunctional role of the conserved residues Phe285, Gln287, and His311 and further underlines their pivotal roles as targets in protein engineering studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Nielsen, C. F., Lange, L., & Meyer, A. S. (2019). Classification and enzyme kinetics of formate dehydrogenases for biomanufacturing via CO2 utilization. In Biotechnology Advances (Vol. 37, Issue 7, p. 107408). Elsevier Inc. https://doi.org/10.1016/j.biotechadv.2019.06.007.

  2. Tishkov, V. I., & Popov, V. O. (2004). Catalytic mechanism and application of formate dehydrogenase. In Biochemistry (Moscow) (Vol. 69, Issue 11, pp. 1252–1267). Springer. https://doi.org/10.1007/s10541-005-0071-x.

  3. Choe, H., Joo, J. C., Cho, D. H., Kim, M. H., Lee, S. H., Jung, K. D., & Kim, Y. H. (2014). Efficient CO2-reducing activity of NAD-dependent formate dehydrogenase from Thiobacillus sp. KNK65MA for formate production from CO 2 gas. PLoS ONE, 9(7). https://doi.org/10.1371/journal.pone.0103111.

  4. Aslan, A. S., Valjakka, J., Ruupunen, J., Yildirim, D., Turner, N. J., Turunen, O., & Binay, B. (2017). Chaetomium thermophilum formate dehydrogenase has high activity in the reduction of hydrogen carbonate (HCO3−) to formate. Protein Engineering, Design and Selection, 30(1), 47–55. https://doi.org/10.1093/protein/gzw062.

    Article  CAS  PubMed  Google Scholar 

  5. Jayathilake, B. S., Bhattacharya, S., Vaidehi, N., & Narayanan, S. R. (2019). Efficient and selective electrochemically driven enzyme-catalyzed reduction of carbon dioxide to formate using formate dehydrogenase and an artificial cofactor. Accounts of Chemical Research, 52(3), 676–685. https://doi.org/10.1021/acs.accounts.8b00551.

    Article  CAS  PubMed  Google Scholar 

  6. Yu, X., Niks, D., Ge, X., Liu, H., Hille, R., & Mulchandani, A. (2019). Synthesis of formate from CO2 gas catalyzed by an O2-tolerant NAD-dependent formate dehydrogenase and glucose dehydrogenase. Biochemistry., 58(14), 1861–1868. https://doi.org/10.1021/acs.biochem.8b01301.

    Article  CAS  PubMed  Google Scholar 

  7. Min, K., Park, Y. S., Park, G. W., Lee, J. P., Moon, M., Ko, C. H., & Lee, J. S. (2020). Elevated conversion of CO2 to versatile formate by a newly discovered formate dehydrogenase from Rhodobacter aestuarii. Bioresource Technology, 305, 123155. https://doi.org/10.1016/j.biortech.2020.123155.

    Article  CAS  PubMed  Google Scholar 

  8. Alekseeva, A. A., Savin, S. S., & Tishkov, V. I. (2011). NAD+-dependent formate dehydrogenase from plants. Acta Naturae, 3(4), 38–54. https://doi.org/10.32607/20758251-2011-3-4-38-54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Guo, Q., Gakhar, L., Wickersham, K., Francis, K., Vardi-Kilshtain, A., Major, D. T., Cheatum, C. M., & Kohen, A. (2016). Structural and kinetic studies of formate dehydrogenase from Candida boidinii. Biochemistry, 55(19), 2760–2771. https://doi.org/10.1021/acs.biochem.6b00181.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Jiang, H.-W., Chen, Q., Pan, J., Zheng, G.-W., & Xu, J.-H. (2020). Rational engineering of Formate dehydrogenase substrate/cofactor affinity for better performance in NADPH regeneration. Applied Biochemistry and Biotechnology, 192(2), 530–543. https://doi.org/10.1007/s12010-020-03317-7.

    Article  CAS  PubMed  Google Scholar 

  11. Labrou, N. E., & Rigden, D. J. (2001). Active-site characterization of Candida boidinii formate dehydrogenase. Biochemical Journal, 354(2), 455–463. https://doi.org/10.1042/bj3540455.

    Article  CAS  PubMed Central  Google Scholar 

  12. Ansorge-Schumacher, M. B., Slusarczyk, H., Schümers, J., & Hirtz, D. (2006). Directed evolution of formate dehydrogenase from Candida boidinii for improved stability during entrapment in polyacrylamide. FEBS Journal, 273(17), 3938–3945. https://doi.org/10.1111/j.1742-4658.2006.05395.x.

    Article  CAS  Google Scholar 

  13. Schirwitz, K., Schmidt, A., & Lamzin, V. S. (2007). High-resolution structures of formate dehydrogenase from Candida boidinii. Protein Science, 16(6), 1146–1156. https://doi.org/10.1110/ps.062741707.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Carter, J. L. L., Bekhouche, M., Noiriel, A., Blum, L. J., & Doumèche, B. (2014). Directed evolution of a formate dehydrogenase for increased tolerance to ionic liquids reveals a new site for increasing the stability. ChemBioChem, 15(18), 2710–2718. https://doi.org/10.1002/cbic.201402501.

    Article  CAS  PubMed  Google Scholar 

  15. Andreadeli, A., Platis, D., Tishkov, V., Popov, V., & Labrou, N. E. (2008). Structure-guided alteration of coenzyme specificity of formate dehydrogenase by saturation mutagenesis to enable efficient utilization of NADP+. FEBS Journal, 275(15), 3859–3869. https://doi.org/10.1111/j.1742-4658.2008.06533.x.

    Article  CAS  Google Scholar 

  16. Zheng, J., Yang, T., Zhou, J., Xu, M., Zhang, X., & Rao, Z. (2017). Elimination of a free cysteine by creation of a disulfide bond increases the activity and stability of Candida boidinii formate dehydrogenase. Applied and Environmental Microbiology, 83(2), 1–12. https://doi.org/10.1128/AEM.02624-16.

    Article  Google Scholar 

  17. Jiang, W., Lin, P., Yang, R., & Fang, B. (2016). Identification of catalysis, substrate, and coenzyme binding sites and improvement catalytic efficiency of formate dehydrogenase from Candida boidinii. Applied Microbiology and Biotechnology, 100(19), 8425–8437. https://doi.org/10.1007/s00253-016-7613-6.

    Article  CAS  PubMed  Google Scholar 

  18. Tishkov, V. I., Goncharenko, K. V., Alekseeva, A. A., Kleymenov, S. Y., & Savin, S. S. (2015). Role of a structurally equivalent phenylalanine residue in catalysis and thermal stability of formate dehydrogenases from different sources. Biochemistry (Moscow), 80(13), 1690–1700. https://doi.org/10.1134/S0006297915130052.

    Article  CAS  Google Scholar 

  19. Tishkov, V. I., Matorin, A. D., Rojkova, A. M., Fedorchuck, V. V., Savitsky, P. A., Demetieva, L. A., Lamzin, V. S., Mezentzev, A. V., & Popov, V. O. (1996). Site-directed mutagenesis of formate dehydrogenase active centre: Role of the His332-Gln313 pair in enzyme catalysis. FEBS Letters, 390(N1), 104–108. https://doi.org/10.1016/0014-5793(96)00641-2.

    Article  CAS  PubMed  Google Scholar 

  20. Perret, G., & Boschetti, E. (2019). Aptamer-based affinity chromatography for protein extraction and purification. 1–47. https://doi.org/10.1007/10_2019_106.

  21. Wallace, B. A. (2019). The role of circular dichroism spectroscopy in the era of integrative structural biology. In Current Opinion in Structural Biology (Vol. 58, pp. 191–196). Elsevier ltd. https://doi.org/10.1016/j.sbi.2019.04.001.

  22. DeLano, L. W. (2002). PyMOL: An open-source molecular graphics tool. Ccp4 Newsletter on Protein Crystallography, 40, 82–94 http://www.ccp4.ac.uk/newsletters/newsletter36.pdf.

    Google Scholar 

  23. Tishkov, V.I., & Popov, V. O. (2006). Protein engineering of formate dehydrogenase. In Biomolecular Engineering (Vol. 23, Issues 2–3, pp. 89–110). Elsevier. https://doi.org/10.1016/j.bioeng.2006.02.003

  24. Sadykhov E.G. (2007). Preparation, thermostability and structural studies of formate dehydrogenases from different sources. Ph.D. Dissertation. Bach Institute of Biochemistry, Russian Academy of Sciences, Moscow.

Download references

Funding

This study was financially supported by the Scientific Research Projects Unit of Bezmialem Vakif University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Baris Binay.

Ethics declarations

Conflicts of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic Supplementary Material

ESM 1

(DOCX 62 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bulut, H., Yuksel, B., Gul, M. et al. Conserved Amino Acid Residues that Affect Structural Stability of Candida boidinii Formate Dehydrogenase. Appl Biochem Biotechnol 193, 363–376 (2021). https://doi.org/10.1007/s12010-020-03429-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-020-03429-0

Keywords

Navigation