Skip to main content

Advertisement

Log in

Soil salinity, pH, and indigenous bacterial community interactively influence the survival of E. coli O157:H7 revealed by multivariate statistics

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Complexities of biotic-abiotic interactions in soils result in the lack of integrated understanding of environmental variables that restrict the survival of shiga toxin-producing E. coli O157:H7. Herein, we reanalyzed previously published data and highlighted the influence of soil abiotic factors on E. coli O157:H7 survivability and elucidated how these factors took effect indirectly through affecting indigenous bacterial community. Interaction network analysis indicated salinity and pH decreased the relative abundances of some bacterial taxa (e.g., Acidobacteria_Gp4, Acidobacteria_Gp6, and Deltaproteobacteria) which were positively correlated with the survival of E. coli O157:H7 in soils, and vice versa (e.g., Gammaproteobacteria and Flavobacteria) (P < 0.05). An array of multivariate statistical approaches including partial Mantel test, variation partition analysis (VPA), and structural equation model (SEM) further confirmed that biotic and abiotic factors interactively shaped the survival profile of E. coli O157:H7. This study revealed that some bacterial taxa were correlated with survival of E. coli O157:H7 directly, and salinity and pH could affect E. coli O157:H7 survival through changing these bacterial taxa. These findings suggest that salinity in soil might benefit the control of fecal pathogenic E. coli invasion, while soil acidification caused by anthropogenic influences could potentially increase the persistence of E. coli O157:H7 in agro-ecosystem.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

The sequencing data could be downloaded in https://www.ars.usda.gov/ARSUSERFILES/20361500/PUBLIC%20DATA/SALINITY%20PRODUCE%20SEQUENCING%20DATA%202010-2015.ZIP.

References

  • Albert I, Mafart P (2005) A modified Weibull model for bacterial inactivation. Int J Food Microbiol 100:197–211

    CAS  Google Scholar 

  • Anderson IC, Rhodes M, Kator H (1979) Sublethal stress in Escherichia coli: a function of salinity. Appl Environ Microbiol 38:1147–1152

    CAS  Google Scholar 

  • Archer E (2013) Estimate permutation p-values for importance metrics. R package version 1.5.2

  • Awasthi MK, Chen H, Duan Y, Liu T, Awasthi SK, Wang Q, Pandey A, Zhang Z (2019) An assessment of the persistence of pathogenic bacteria removal in chicken manure compost employing clay as additive via meta-genomic analysis. J Hazard Mater 366:184–191

    Google Scholar 

  • Bahram M, Hildebrand F, Forslund SK, Anderson JL, Soudzilovskaia NA, Bodegom PM, Bengtsson-Palme J, Anslan S, Coelho LP, Harend H, Huerta-Cepas J, Medema MH, Maltz MR, Mundra S, Olsson PA, Pent M, Põlme S, Sunagawa S, Ryberg M, Tedersoo L, Bork P (2018) Structure and function of the global topsoil microbiome. Nature. 560:233–237

    CAS  Google Scholar 

  • Balamurugan S, Ahmed R, Gao A (2015) Survival of Shiga toxin-producing Escherichia coli in broth as influenced by pH, water activity and temperature. Lett Appl Microbiol 60:341–346

    CAS  Google Scholar 

  • Barberán A, Bates ST, Casamayor EO, Fierer N (2011) Using network analysis to explore co-occurrence patterns in soil microbial communities. ISME J 6:343

    Google Scholar 

  • Bastian M, Heymann S, Jacomy M (2009) Gephi: An open source software for exploring and manipulating networks. International AAAI Conference on Weblogs and Social Media

  • Berger CN, Sodha SV, Shaw RK, Griffin PM, Pink D, Hand P, Frankel G (2010) Fresh fruit and vegetables as vehicles for the transmission of human pathogens. Environ Microbiol 12:2385–2397

    Google Scholar 

  • Borcard D, Legendre P, Drapeau P (1992) Partialling out the spatial component of ecological variation. Ecology 73:1045–1055

    Google Scholar 

  • Breiman L (2001) Random forests. Mach Learn 41:15–32

    Google Scholar 

  • Buttigieg PL, Ramette A (2014) A guide to statistical analysis in microbial ecology: a community-focused, living review of multivariate data analyses. FEMS Microbiol Ecol 90:543–550

    CAS  Google Scholar 

  • Byrne BM (2001) Structural equation modeling with AMOS: basic concepts, applications, and programming. Lawrence Erlbaum Associates Publishers, Mahwah

    Google Scholar 

  • Cai P, Liu X, Ji D, Yang S, Walker SL, Wu Y, Gao C, Huang Q (2018) Impact of soil clay minerals on growth, biofilm formation, and virulence gene expression of Escherichia coli O157:H7. Environ Pollut 243:953–960

    CAS  Google Scholar 

  • Cooley M, Carychao D, Crawford-Miksza L, Jay MT, Myers C, Rose C, Keys C, Farrar J, Mandrell RE (2007) Incidence and tracking of Escherichia coli O157:H7 in a major produce production region in California. PLoS One 2:e1159

    Google Scholar 

  • Csardi G, Nepusz T (2006) The Igraph software package for complex network research. Int J Complex Syst 1965

  • Dixon P (2003) VEGAN, a package of R functions for community ecology. J Veg Sci 14:927–930

    Google Scholar 

  • Eichorst SA, Kuske CR, Schmidt TM (2011) Influence of plant polymers on the distribution and cultivation of bacteria in the phylum acidobacteria. Appl Environ Microbiol 77:586–596

    CAS  Google Scholar 

  • Eisenhauer N, Bowker MA, Grace JB, Powell JR (2015) From patterns to causal understanding: Structural equation modeling (SEM) in soil ecology. Pedobiologia 58:65–72

    Google Scholar 

  • Franz E, van Diepeningen AD, de Vos OJ, van Bruggen AHC (2005) Effects of cattle feeding regimen and soil management type on the fate of Escherichia coli O157 : H7 and Salmonella enterica serovar typhimurium in manure, manure-amended soil, and lettuce. Appl Environ Microbiol 71:6165–6174

    CAS  Google Scholar 

  • Franz E, Semenov AV, Termorshuizen AJ, de Vos OJ, Bokhorst JG, van Bruggen AHC (2008) Manure-amended soil characteristics affecting the survival of E-coli O157 : H7 in 36 Dutch soils. Environ Microbiol 10:313–327

    CAS  Google Scholar 

  • Franz E, Rotariu O, Lopes BS, MacRae M, Bono JL, Laing C, Gannon V, Soderlund R, van Hoek AHAM, Friesema I, French NP, George T, Biggs PJ, Jaros P, Rivas M, Chinen I, Campos J, Jernberg C, Gobius K, Mellor GE, Chandry PS, Perez-Reche F, Forbes KJ, Strachan NJC (2018) Phylogeographic analysis reveals multiple international transmission events have driven the global emergence of Escherichia coli O157:H7. Clin Infect Dis

  • Geeraerd AH, Valdramidis VP, Van Impe JF (2005) GInaFiT, a freeware tool to assess non-log-linear microbial survivor curves. Int J Food Microbiol 102:95–105

    CAS  Google Scholar 

  • Harrell J, Frank E (2008) Hmisc: Harrell miscellaneous. R package version 3.5-2

  • Hellberg RS, Chu E (2015) Effects of climate change on the persistence and dispersal of foodborne bacterial pathogens in the outdoor environment: a review. Crit Rev Microbiol:1–25

  • Hooper D, Coughlan J, Mullen MR (2008) Structural equation modelling: guidelines for determining model fit. Electron J Bus Res Methods 6:53–60

    Google Scholar 

  • Huang G, Liao J, Han Z, Li J, Zhu L, Lyu G, Lu L, Xie Y, Ma J (2020) Interaction between fungal communities, soil properties, and the survival of invading E. coli O157:H7 in soils. Int J Envriron Re Public Health 17:3516

    CAS  Google Scholar 

  • Kumar GD, Ravi S, Micallef SA, Brown EW, Macarisin D (2017) Aeolian contamination of fruits by enteric pathogens: an unexplored paradigm. Curr Opin Food Sci 19:138–144

    Google Scholar 

  • Li SP, Tan J, Yang X, Ma C, Jiang L (2019) Niche and fitness differences determine invasion success and impact in laboratory bacterial communities. ISME J 13:402–412

    Google Scholar 

  • Liang Y, Jiang Y, Wang F, Wen C, Deng Y, Xue K, Qin Y, Yang Y, Wu L, Zhou J, Sun B (2015) Long-term soil transplant simulating climate change with latitude significantly alters microbial temporal turnover. ISME J 9:2561–2572

    Google Scholar 

  • Liaw A, Wiener M (2002) Classification and Regression by RandomForest. R News:18–22

  • Lin JS, Smith MP, Chapin KC, Baik HS, Bennett GN, Foster JW (1996) Mechanisms of acid resistance in enterohemorrhagic Escherichia coli. Appl Environ Microbiol 62:3094–3100

    CAS  Google Scholar 

  • Ma J, Ibekwe AM, Yi X, Wang H, Yamazaki A, Crowley DE, Yang C-H (2011) Persistence of Escherichia coli O157:H7 and Its Mutants in Soils. PLoS One 6

  • Ma J, Ibekwe AM, Crowley DE, Yang C-H (2012a) Persistence of Escherichia coli O157:H7 in major leafy green producing soils. Environ Sci Technol 46:12154–12161

    CAS  Google Scholar 

  • Ma J, Ibekwe AM, Leddy M, Yang C-H, Crowley DE (2012b) Assimilable organic carbon (AOC) in soil water extracts using Vibrio harveyi BB721 and its implication for microbial biomass. PLoS One 7

  • Ma J, Ibekwe AM, Yang C-H, Crowley DE (2013) Influence of bacterial communities based on 454-pyrosequencing on the survival of Escherichia coli O157:H7 in soils. FEMS Microbiol Ecol 84:542–554

    CAS  Google Scholar 

  • Ma R, Wang G, Tian Y, Wang K, Zhang J, Fang J (2015) Non-thermal plasma-activated water inactivation of food-borne pathogen on fresh produce. J Hazard Mater 300:643–651

    CAS  Google Scholar 

  • Mallon CA, Poly F, Le Roux X, Marring I, van Elsas JD, Salles JF (2015a) Resource pulses can alleviate the biodiversity-invasion relationship in soil microbial communities. Ecology 96:915–926

    Google Scholar 

  • Mallon CA, van Elsas JD, Salles JF (2015b) Microbial invasions: the process, patterns, and mechanisms. Trends Microbiol 23:719–729

    CAS  Google Scholar 

  • Mantel N (1967) The detection of disease clustering and a generalized regression approach. Cancer Res 27:209–220

    CAS  Google Scholar 

  • Munro PM, Flatau GN, Clement RL, Gauthier MJ (1995) Influence of the Rpos (Katf) sigma-factor on maintenance of viability and culturability of Escherichia-Coli and Salmonella-Typhimurium in seawater. Appl Environ Microbiol 61:1853–1858

    CAS  Google Scholar 

  • Ongeng D, Muyanja C, Geeraerd AH, Springael D, Ryckeboer J (2011) Survival of Escherichia coli O157:H7 and Salmonella enterica serovar Typhimurium in manure and manure-amended soil under tropical climatic conditions in Sub-Saharan Africa. J Appl Microbiol 110:1007–1022

    CAS  Google Scholar 

  • Ongeng D, Geeraerd AH, Springael D, Ryckeboer J, Muyanja C, Mauriello G (2015) Fate of Escherichia coli O157:H7 and Salmonella enterica in the manure-amended soil-plant ecosystem of fresh vegetable crops: a review. Crit Rev Microbiol 41:273–294

    Google Scholar 

  • Peres-Neto PR, Legendre P, Dray S, Borcard D (2006) Variation partitioning of species data matrices: estimation and comparison of fractions. Ecology 87:2614–2625

    Google Scholar 

  • Ritchie JM, Campbell GR, Shepherd J, Beaton Y, Jones D, Killham K, Artz RRE (2003) A stable bioluminescent construct of Escherichia coli O157 : H7 for hazard assessments of long-term survival in the environment. Appl Environ Microbiol 69:3359–3367

    CAS  Google Scholar 

  • Rosseel Y (2012) lavaan : an R package for structural equation modeling. J Stat Softw 48

  • Schermelleh-Engel K, Moosbrugger H, Müller H (2003) Evaluating the fit of structural equation models: tests of significance and descriptive goodness-of-fit measures. Methods Psychol Res 8:23–74

    Google Scholar 

  • Shabala L, Bowman J, Brown J, Ross T, McMeekin T, Shabala S (2009) Ion transport and osmotic adjustment in Escherichia coli in response to ionic and non-ionic osmotica. Environ Microbiol 11:137–148

    CAS  Google Scholar 

  • Smouse PE, Long JC, Sokal RR (1986) Multiple-regression and correlation extensions of the Mantel test of matrix correspondence. Syst Zool 35:627–632

    Google Scholar 

  • Teplitski M, de Moraes M (2018) Of mice and men....and plants: comparative genomics of the dual lifestyles of enteric pathogens. Trends Microbiol

  • Turner K, Moua CN, Hajmeer M, Barnes A, Needham M (2019) Overview of leafy greens-related food safety incidents with a California link: 1996 to 2016. J Food Prot 82:405–414

    Google Scholar 

  • van Elsas JD, Semenov AV, Costa R, Trevors JT (2011) Survival of Escherichia coli in the environment: fundamental and public health aspects. ISME J 5:173–183

    Google Scholar 

  • van Elsas JD, Chiurazzi M, Mallon CA, Elhottova D, Kristufek V, Salles JF (2012) Microbial diversity determines the invasion of soil by a bacterial pathogen. Proc Natl Acad Sci U S A 109:1159–1164

    Google Scholar 

  • Wang HZZ, Wei G, Yao ZYY, Lou J, Xiao KCC, Wu LSS, Wu JJJ, Xu JMM (2014) Response of Escherichia coli O157:H7 survival to pH of cultivated soils. J Soils Sediments 14:1841–1849

    CAS  Google Scholar 

  • Westphal A, Williams ML, Baysal-Gurel F, LeJeune JT, Gardener BBM (2011) General suppression of Escherichia coli O157:H7 in sand-based dairy livestock bedding. Appl Environ Microbiol 77:2113–2121

    CAS  Google Scholar 

  • Xing J, Wang H, Brookes PC, Salles JF, Xu J (2019) Soil pH and microbial diversity constrain the survival of E-coli in soil. Soil Biol Biochem 128:139–149

    CAS  Google Scholar 

  • Yao Z, Wei G, Wang H, Wu L, Wu J, Xu J (2013) Survival of Escherichia coli O157:H7 in soils from vegetable fields with different cultivation patterns. Appl Environ Microbiol 79:1755–1756

    CAS  Google Scholar 

  • Yao Z, Wang H, Wu L, Wu J, Brookes PC, Xu J (2014) Interaction between the microbial community and invading Escherichia coli O157:h7 in soils from vegetable fields. Appl Environ Microbiol 80:70–76

    CAS  Google Scholar 

  • Yao Z, Yang L, Wang H, Wu J, Xu J (2015) Fate of Escherichia coli O157: H7 in agricultural soils amended with different organic fertilizers. J Hazard Mater 296:30–36

    CAS  Google Scholar 

  • Zhu Y-G, Zhao Y, Li B, Huang C-L, Zhang S-Y, Yu S, Chen Y-S, Zhang T, Gillings MR, Su J-Q (2017) Continental-scale pollution of estuaries with antibiotic resistance genes. Nat Microbiol 2:16270

    CAS  Google Scholar 

Download references

Acknowledgments

We thank Drs. Jorge Fonseca of the University of Arizona Yuma, Mark Trent, UC-Davis, Imperial Agricultural Experiment Station, and James McCreight of USDA-ARS Salinas, CA for providing soil samples for this study. We also thank Damon Baptista for technical help and Qiuting Zhang for statistical analysis.

Funding

This research was financed by the National Natural Science Foundation of China (no. 41571304), CSREES NIFA Agreement 2008-35201-18709, and the 206 Manure and Byproduct Utilization Project of the USDA-ARS.

Author information

Authors and Affiliations

Authors

Contributions

Ziming Han: conceptualization, methodology, formal analysis, and writing—original draft preparation; Jincai Ma: methodology, conceptualization, supervision, funding acquisition, and writing—reviewing and editing; Abasiofiok Mark Ibekwe: project administration, funding acquisition, resources, and writing—reviewing and editing; Ching-Hong Yang: methodology and writing—reviewing and editing. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Jincai Ma.

Ethics declarations

Competing interests

The authors declare that they have no competing interests.

Ethics approval and consent to participate

Not applicable.

Consent for publication

Not applicable.

Additional information

Responsible Editor: Robert Duran

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

Additional experimental methodology showed survival experiment of E. coli O157:H7 in soils and survival data modeling; additional tables related to correlation analysis among survival parameters, physicochemical properties, and bacterial groups; additional figures were comparisons of survival parameters, salinity, pH, and bacterial community among different sampling sites, concentrations of Na+, K+, Ca2+, and Mg2+ in soil water extracts, and the relationships between soil physicochemical properties and accumulated bacterial class abundance. (DOCX 3.86 MB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Han, Z., Ma, J., Yang, CH. et al. Soil salinity, pH, and indigenous bacterial community interactively influence the survival of E. coli O157:H7 revealed by multivariate statistics. Environ Sci Pollut Res 28, 5575–5586 (2021). https://doi.org/10.1007/s11356-020-10942-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-020-10942-6

Keywords

Navigation