skip to main content
research-article

Rehabilitation Games in Real-World Clinical Settings: Practices, Challenges, and Opportunities

Published:08 November 2020Publication History
Skip Editorial Notes Section

Editorial Notes

The authors have requested minor, non-substantive changes to the VoR and, in accordance with ACM policies, a Corrected VoR was published on March 15, 2021. For reference purposes the VoR may still be accessed via the Supplemental Material section on this page.

Skip Abstract Section

Abstract

Upper-limb impairments due to stroke can severely affect the quality of life in patients. Scientific evidence supports that repetitive rehabilitation exercises can improve motor ability in stroke patients. Rehabilitation games gained tremendous interest among researchers and clinicians because of their potential to make the seemingly mundane, enduring rehabilitation therapies more engaging. However, routine and longitudinal use of rehabilitation games in real-world clinical settings has not been investigated in depth. Particularly, we know little about current practices, challenges, and their potential impacts on therapeutic outcomes. To address this gap, we established a partnership with a rehabilitation hospital where game-assisted rehabilitation was routinely employed over a 2-year period. We then conducted an observational study, in which we observed 11 game-assisted therapy sessions and interviewed 15 therapists who moderated the therapy. Significant findings include (1) different engagement patterns of stroke patients in game-assisted therapy, (2) imperative roles of therapists in moderating games and challenges that therapists face during game-assisted therapy, and (3) lack of support for therapists in delivering patient-centered, personalized therapy to individual stroke patients. Furthermore, we discuss design implications for more effective rehabilitation game therapies that take into consideration both patients and therapists and their specific needs.

Skip Supplemental Material Section

Supplemental Material

References

  1. D. Aggarwal, B. Ploderer, F. Vetere, M. Bradford, and T. Hoang. 2016. Doctor, can you see my squats? Understanding bodily communication in video consultations for physiotherapy. In Proceedings of the 2016 ACM Conference on Designing Interactive Systems.Google ScholarGoogle Scholar
  2. G. Alankus and C. Kelleher. 2012. Reducing compensatory motions in videogames for stroke rehabilitation. In Proceedings of the ACM Conference on Human Factors in Computing Systems.Google ScholarGoogle Scholar
  3. G. Alankus, A. Lazar, M. May, and C. Kelleher. 2010. Towards customizable games for stroke rehabilitation. In Proceedings of the ACM Conference on Human Factors in Computing Systems.Google ScholarGoogle Scholar
  4. American Psychiatric Association. 2013. Guide to Physical Therapist Practice. American Psychiatric Association Publishing.Google ScholarGoogle Scholar
  5. J. Annema, M. Verstraete, V. Abeele, S. Desmet, and D. Geerts. 2010. Videogames in therapy: A therapist’s perspective. In Proceedings of the International Conference on Fun and Games.Google ScholarGoogle Scholar
  6. Viviane C. R. Appel, Valdinei L. Belini, Denny H. Jong, Daniel V. Magalhães, and Glauco A. P. Caurin. 2014. Classifying emotions in rehabilitation robotics based on facial skin temperature. In Proceedings of the 5th IEEE RAS/EMBS International Conference on Biomedical Robotics and Biomechatronics. IEEE, 276--280.Google ScholarGoogle Scholar
  7. M. Augstein, T. Neumayr, and I. Schacherl-Hofer. 2014. The usability of a tabletop application for neuro-rehabilitation from therapists’ point of view. In Proceedings of the ACM International Conference on Interactive Tabletops and Surfaces.Google ScholarGoogle Scholar
  8. K. K. A. Bakhti, I. Laffont, M. Muthalib, J. Froger, and D. Mottet. 2018. Kinect-based assessment of proximal arm non-use after a stroke. Journal of NeuroEngineering and Rehabilitation 15, 104 (2018), 1--12.Google ScholarGoogle ScholarCross RefCross Ref
  9. M. Balaam, S. R. Egglestone, G. Fitzpatrick, T. Rodden, A. Hughes, A. Wilkinson, T. Nind, L. Axelrod, E. Harris, I. Ricketts, S. Mawson, and J. Burridge. 2011. Motivating mobility: Designing for lived motivation in stroke rehabilitation. In Proceedings of the ACM Conference on Human Factors in Computing Systems.Google ScholarGoogle Scholar
  10. Tanya Barber, Behnam Sharif, Sylvia Teare, Jean Miller, Brittany Shewchuk, Lee A. Green, Nancy Marlett, Jolanda Cibere, Kelly Mrklas, Tracy Wasylak, Linda C. Li, Denise Campbell-Scherer, and Deborah A. Marshall. 2019. Qualitative study to elicit patients’ and primary care physicians’ perspectives on the use of a self-management mobile health application for knee osteoarthritis. BMJ Open 9, 1 (2019), 1--8. DOI:https://doi.org/10.1136/bmjopen-2018-024016Google ScholarGoogle ScholarCross RefCross Ref
  11. A. L. Bellner. 1999. Senses of responsibility: A challenge for occupational and physical therapists in the context of ongoing professionalism. Scandinavian Journal of Caring Sciences 13, 1 (1999), 55--62.Google ScholarGoogle Scholar
  12. Athina Belsi, Enrica Papi, and Alison H. McGregor. 2016. Impact of wearable technology on psychosocial factors of osteoarthritis management: A qualitative study. BMJ Open 6, 2 (2016), e010064. DOI:https://doi.org/10.1136/bmjopen-2015-010064Google ScholarGoogle ScholarCross RefCross Ref
  13. S. Benford, C. Greenhalgh, A. Crabtree, M. Flintham, B. Walker, J. Marshall, B. Koleva, S. Rennick-Egglestone, G. Giannahi, M. Adams, N. Tandavanitj, and J. Row Farr. 2013. Performance-led research in the wild. ACM Transactions on Computer-Human Interaction 20, 3 (2013), 1--22.Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. A. Blandford, E. Berndt, K. Catchpole, D. Furniss, A. Mayer, H. Mentis, A. A. O’Kane, T. Owen, A. Rajkomar, and R. Randell. 2015. Strategies for conducting situated studies of technology use in hospitals. Cognition, Technology and Work 17 (2015), 489--502.Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. J. Blennerhassett and W. Dite. 2004. Additional task-related practice improves mobility and upper limb function early after stroke: A randomised controlled trial. Australian Journal of Physiotherapy 50, 4 (2004), 219--224.Google ScholarGoogle ScholarCross RefCross Ref
  16. A. J. Bongers, S. Smith, V. Donker, M. Pickrell, R. Hall, and S. Lie. 2014. Interactive infrastructures: Physical rehabilitation modules for pervasive healthcare technology. In Pervasive Health, A. Holzinger, M. Ziefle, and C. Röcker (Eds.). Springer, 229--254.Google ScholarGoogle Scholar
  17. N. A. Borghese, M. Pirovano, P. L. Lanzi, S. Wüest, and E. D. de Bruin. 2013. Computational intelligence and game design for effective at-home stroke rehabilitation. Games for Health Journal: Research, Development, and Clinical Applications 2, 2 (2013), 81--88.Google ScholarGoogle ScholarCross RefCross Ref
  18. V. Braun and V. Clarke. 2006. Using thematic analysis in psychology. Qualitative Research in Psychology 3, 2 (2006), 77--101.Google ScholarGoogle ScholarCross RefCross Ref
  19. E. B. Brokaw, P. S. Lum, R. A. Cooper, and B. R. Brewer. 2013. Using the kinect to limit abnormal kinematics and compensation strategies during therapy with end effector robots. In Proceedings of IEEE International Conference on Rehabilitation Robotics.Google ScholarGoogle Scholar
  20. K. Brütsch, A. Koenig, L. Zimmerli, S. Mérillat, R. Riener, L. Jäncke, H. J. A van Hedel, and A. Meyer-Heim. 2011. Virtual reality for enhancement of robot-assisted gait training in children with central gait disorders. Journal of Rehabilitation Medicine 43, 6 (2011), 493--499.Google ScholarGoogle ScholarCross RefCross Ref
  21. C. Butefisch, H. Hummelsheim, P. Denzler, and K. Mauritz. 1995. Repetitive training of isolated movements improves the outcome of motor rehabilitation of the centrally paretic hand. Journal of the Neurological Sciences 130, 1 (1995), 59--68.Google ScholarGoogle ScholarCross RefCross Ref
  22. J. Cheng and C. Putnam. 2015. Therapeutic gaming in context: Observing game use for brain injury rehabilitation. In Proceedings of the ACM Conference on Human Factors in Computing Systems Extended Abstracts.Google ScholarGoogle Scholar
  23. J. H. Choi, E. Y. Han, B. R. Kim, S. M. Kim, S. H. Im, S. Y. Lee, and C. W. Hyun. 2014. Effectiveness of commercial gaming-based virtual reality movement therapy on functional recovery of upper extremity in subacute stroke patients. Annals of Rehabilitation Medicine 38, 4 (2014), 485--493.Google ScholarGoogle ScholarCross RefCross Ref
  24. A. H. Christensen. 2004. Patient Adherence to Medical Treatment Regimens. Yale University Press, New Haven, CT.Google ScholarGoogle Scholar
  25. M. Csikszentmihalyi. 1990. Flow: The Psychology of Optimal Experience. Harper 8 Row, New York, NY.Google ScholarGoogle Scholar
  26. T. B. Cumming, R. S. Marshall, and R. M. Lazar. 2013. Stroke, cognitive deficits, and rehabilitation: Still an incomplete picture. Stroke 8, 1 (2013), 38--45.Google ScholarGoogle ScholarCross RefCross Ref
  27. B. De Schutter. 2011. Never too old to play: The appeal of digital games to an older audience. Games and Cluture 6, 2 (2011), 155--170.Google ScholarGoogle ScholarCross RefCross Ref
  28. J. E. Deutsch, A. Brettler, C. Smith, J. Welsh, R. John, P. Guarrera-Bowlby, and M. Kafri. 2011. Nintendo wii sports and wii fit game analysis, validation, and application to stroke rehabilitation. Topics in Stroke Rehabilitation 18, 6 (2011), 701--719.Google ScholarGoogle ScholarCross RefCross Ref
  29. E. Dolatabadi, Y. X. Zhi, B. Ye, M. Coahran, G. Lupinacci, A. Mihailidis, R. Wang, and B. Taati. 2017. The toronto rehab stroke pose dataset to detect compensation during stroke rehabilitation therapy. In Proceedings of the 11th EAI International Conference on Pervasive Computing Technologies for Healthcare.Google ScholarGoogle Scholar
  30. A. Edwards and G. Elwyn. 2009. Shared Decision-making in Health Care: Achieving Evidence-based Patient Choice. Oxford University Press.Google ScholarGoogle Scholar
  31. S. M. El-Shamy. 2018. Efficacy of Armeo® robotic therapy versus conventional therapy on upper limb function in children with hemiplegic cerebral palsy. American Journal of Physical Medicine 8 Rehabilitation 97, 3 (2018), 164--169.Google ScholarGoogle Scholar
  32. C. G. Fairburn and Z. Cooper. 2011. Therapist competence, therapy quality, and therapist training. Behaviour Research and Therapy 49, 6--7 (2011), 373--378.Google ScholarGoogle ScholarCross RefCross Ref
  33. H. Faller. 2003. Shared decision making: An approach to strengthening patient participation in rehabilitation. Die Rehabilitation 42, 3 (2003), 129--135.Google ScholarGoogle ScholarCross RefCross Ref
  34. I. Faria-Fortini, S. M. Michaelsen, J. G. Cassiano, and L. F. Teixeira-Salmela. 2011. Upper extremity function in stroke subjects: Relationships between the international classification of functioning, disability, and health domains. Journal of Hand Therapy 24, 3 (2011), 257--265.Google ScholarGoogle ScholarCross RefCross Ref
  35. M. F. Folstein, L. N. Robins, and J. E. Helzer. 1983. The mini-mental state examination. Archives of General Psychiatry 40, 7 (1983), 812--812.Google ScholarGoogle ScholarCross RefCross Ref
  36. Nizan Friedman, Vicky Chan, Andrea N. Reinkensmeyer, Ariel Beroukhim, Gregory J. Zambrano, Mark Bachman, and David J. Reinkensmeyer. 2014. Retraining and assessing hand movement after stroke using the MusicGlove: Comparison with conventional hand therapy and isometric grip training. Journal of Neuroengineering and Rehabilitation 11, 76 (2014), 1--14.Google ScholarGoogle ScholarCross RefCross Ref
  37. K. M. Gerling, I. J. Livingston, L. E. Nacke, and R. L. Mandryk. 2012. Full-body motion-based game interaction for older adults. In Proceedings of the ACM Conference on Human Factors in Computing Systems.Google ScholarGoogle Scholar
  38. K. M. Gerling, R. L. Mandryk, and C. Linehan. 2015. Long-term use of motion-based video games in care home settings. In Proceedings of the ACM Conference on Human Factors in Computing Systems.Google ScholarGoogle Scholar
  39. K. M. Gerling, M. Miller, R. L. Madryk, M. Birk, and J. Smeddinck. 2014. Effects of balancing for physical abilities on player performance, experience and self-esteem in exergames. In Proceedings of the ACM Conference on Human Factors in Computing Systems.Google ScholarGoogle Scholar
  40. L. Geurts, V. V. Abeele, J. Husson, F. Windey, M. Van Overveldt, J. Annema, and S. Desmet. 2011. Digital games for physical therapy: Fulfilling the need for calibration and adaptation. In Proceedings of the 5th International Conference on Tangible, Embedded, and Embodied Interaction. 117--124.Google ScholarGoogle Scholar
  41. R. Gillen, H. Tennen, T. E. McKee, P. Gernert-Dott, and G. Affleck. 2001. Depressive symptoms and history of depression predict rehabilitation efficiency in stroke patients. Archives of Physical Medicine and Rehabilitation 82, 12 (2001), 1645--1649.Google ScholarGoogle ScholarCross RefCross Ref
  42. Alba Gomez-Andres, Jennifer Grau-Sánchez, Esther Duarte, Antoni Rodriguez-Fornells, and Ana Tajadura-Jiménez. 2019. Enriching footsteps sounds in gait rehabilitation in chronic stroke patients: A pilot study. Annals of the New York Academy of Sciences 1467, 1 (2019), 48--59.Google ScholarGoogle ScholarCross RefCross Ref
  43. S. M. Grüsser, R. Thalemann, and M. D. Griffiths. 2006. Excessive computer game playing: Evidence for addiction and aggression? Cyberpsychology 8 Behavior 10, 2 (2006), 290--292.Google ScholarGoogle Scholar
  44. M. A. Guandagnoli and T. D. Lee. 2004. Challenge point: A framework for conceptualizing the effects of various practice conditions in motor learning. Journal of Motor Behavior 36, 3 (2004), 212--224.Google ScholarGoogle ScholarCross RefCross Ref
  45. J. E. Harris and J. J. Eng. 2007. Paretic upper-limb strength best explains arm activity in people with stroke. Physical Therapy 87, 1 (2007), 88--97.Google ScholarGoogle ScholarCross RefCross Ref
  46. K. W. Hayes, G. Huber, J. Rogers, and B. Sanders. 1999. Behaviors that cause clinical instructors to question the clinical competence of physical therapist students. Physical Therapy 79, 7 (1999), 653--667.Google ScholarGoogle ScholarCross RefCross Ref
  47. Valerie Hill, Leah Dunn, Kari Dunning, and Stephen J. Page. 2011. A pilot study of rhythm and timing training as a supplement to occupational therapy in stroke rehabilitation. Topics in Stroke Rehabilitation 18, 6 (2011), 728--737.Google ScholarGoogle ScholarCross RefCross Ref
  48. Hocoma. 2019. Product Training. Retrieved from https://www.hocoma.com/us/solutions/arm-hand.Google ScholarGoogle Scholar
  49. Hocoma. 2019. Webinars. Retrieved from https://www.hocoma.com/us/services/hocoma-academy/webinars/.Google ScholarGoogle Scholar
  50. M. K. Holden and T. Dyar. 2002. Virtual environment training: A new tool for neurorehabilitation. Journal of Neurologic Physical Therapy 26, 2 (2002), 62--71.Google ScholarGoogle Scholar
  51. R. Hunicke. 2005. The case for dynamic difficulty adjustment in games. In Proceedings of the ACM SIGCHI International Conference on Advances in Computer Entertainment Technology.Google ScholarGoogle ScholarDigital LibraryDigital Library
  52. Julia M. Hush, Kirsten Cameron, and Martin Mackey. 2011. Patient satisfaction with musculoskeletal physical therapy care: A systematic review. Physical Therapy 91, 1 (2011), 25--36.Google ScholarGoogle ScholarCross RefCross Ref
  53. Julia M. Hush, Haejung Lee, Vivian Yung, Roger Adams, Martin Mackey, Benedict M. Wand, Roger Nelson, and Paul Beattie. 2013. Intercultural comparison of patient satisfaction with physiotherapy care in Australia and Korea: An exploratory factor analysis. Journal of Manual 8 Manipulative Therapy 21, 2 (2013), 103--112.Google ScholarGoogle ScholarCross RefCross Ref
  54. Julia M. Hush, Vivian Yang, Martin Mackey, Roger Adams, Benedict M. Wand, Roger Nelso, and Paul Beattie. 2012. Patient satisfaction with musculoskeletal physiotherapy care in Australia: An international comparison. The Journal of Manual 8 Manipulative Therapy 20, 4 (2012), 201--208.Google ScholarGoogle ScholarCross RefCross Ref
  55. Gi Jung Hyun, Doug Hyun Han, Young Sik Lee, Kyoung Doo Kang, Seo Koo Yoo, Un-Sun Chung, and Perry F. Renshaw. 2015. Risk factors associated with online game addiction: A hierarchical model. Computers in Human Behavior 48, C (2015), 706--713.Google ScholarGoogle Scholar
  56. L. Y. Joo, T. S. Yin, D. Xu, E. Thia, P. F. Chia, C. W. K. Kuah, and K. K. He. 2010. A feasibility study using interactive commercial off-the-shelf computer gaming in upper limb rehabilitation in patients after stroke. Journal of Rehabilitaion Medicine 42, 5 (2010), 437--441.Google ScholarGoogle ScholarCross RefCross Ref
  57. H. Jung, R. Freedman, T. Foster, Y. Choe, S. Zilberstein, and R. A. Grupen. 2015. Learning therapy strategies from demonstration using latent dirichlet allocation. In Proceedings of the ACM International Conference on Intelligent User Interface.Google ScholarGoogle Scholar
  58. H. Jung, H. Kim, J. Jeong, B. Jeon, T. Ryu, and Y. Kim. 2017. Feasibility of using the RAPAEL smart glove in upper limb physical therapy for patients after stroke: A randomized controlled trial. In Proceedings of the 39th Annual International Conference of the IEEE Engineering in Medicine and Biology Society.Google ScholarGoogle Scholar
  59. H. Jung, H. Kim, M. Y. Oh, T. Ryu, and Y. Kim. 2017. Learning classifier to evaluate the arm movement quality in unassisted pick-and-place exercises for post-stroke patients: A preliminary study. In Proceedings of the 39th Annual International Conference of the IEEE Engineering in Medicine and Biology Society.Google ScholarGoogle Scholar
  60. H. Jung, J. Park, J. Jeong, T. Ryu, Y. Kim, and S. I. Lee. 2018. A wearable monitoring system for at-home stroke rehabilitation exercises: A preliminary study. In Proceedings of the International Conference on the IEEE Biomedical and Health Informatics.Google ScholarGoogle Scholar
  61. Y. Kang, D. L. Na, and S. Hahn. 1997. A validity study on the Korean mini-mental state examination (K-MMSE) in dementia patients. Journal of the Korean Neurological Association 15, 2 (1997), 300--308.Google ScholarGoogle Scholar
  62. Pulkit Kapur, Mallory Jensen, Laurel J. Buxbaum, Steven A. Jax, and Katherine J. Kuchenbecker. 2010. Spatially distributed tactile feedback for kinesthetic motion guidance. In Proceedings of the 2010 IEEE Haptics Symposium. IEEE, 519--526.Google ScholarGoogle Scholar
  63. Pulkit Kapur, Sunthar Premakumar, Steven A. Jax, Laurel J. Buxbaum, Amanda M. Dawson, and Katherine J. Kuchenbecker. 2009. Vibrotactile feedback system for intuitive upper-limb rehabilitation. In Proceedings of the World Haptics 2009-3rd Joint EuroHaptics Conference and Symposium on Haptic Interfaces for Virtual Environment and Teleoperator Systems. IEEE, 621--622.Google ScholarGoogle Scholar
  64. M. P. Kilgard and M. M. Merzenich. 1998. Cortical map reorganization enabled by nucleus basalis activity. Science 279, 5357 (1998), 1714--1718.Google ScholarGoogle Scholar
  65. B. R. Kim, M. H. Chun, L. S. Kim, and J. Y. Park. 2011. Effect of virtual reality on cognition in stroke patients. Annals of Rehabilitation Medicine 35, 4 (2011), 450--459.Google ScholarGoogle ScholarCross RefCross Ref
  66. Sung Soo Kim and Byung Kyu Park. 2008. Patient-perceived communication styles of physicians in rehabilitation: The effect on patient satisfaction and compliance in Korea. American Journal of Physical Medicine 8 Rehabilitation 87, 12 (2008), 998--1005.Google ScholarGoogle ScholarCross RefCross Ref
  67. M. King, J. M. Hijmans, M. Sampson, J. Satherley, and L. Hale. 2012. Home-based stroke rehabilitation using computer gaming. New Zealand Journal of Physiotherapy 40, 3 (2012), 128--134.Google ScholarGoogle Scholar
  68. Alexander Koenig, Ximena Omlin, Lukas Zimmerli, Mark Sapa, Carmen Krewer, Marc Bolliger, Friedemann Müller, and Robert Riener. 2011. Psychological state estimation from physiological recordings during robot-assisted gait rehabilitation. Journal of Rehabilitation Research and Development 48, 4 (2011), 367--385.Google ScholarGoogle ScholarCross RefCross Ref
  69. K. B. Kortte, L. D. Falk, R. C. Castillo, D. Johnson-Greene, and S. T. Wegener. 2007. The hopkins rehabilitation engagement rating scale: Development and psychometric properties. Archives of Physical Medicine and Rehabilitation 88, 7 (2007), 877--884.Google ScholarGoogle ScholarCross RefCross Ref
  70. K. B. Kortte and S. T. Wegener. 2004. Denial of illness in medical rehabilitation populations: Theory, research, and definition. Rehabilitation Psychology 49, 3 (2004), 187--199.Google ScholarGoogle ScholarCross RefCross Ref
  71. H. I. Krebs and N. Hogan. 2006. Therapeutic robotics: A technology push. Proceedings of the IEEE 94, 9 (2006), 1727--1738.Google ScholarGoogle ScholarCross RefCross Ref
  72. A. Kunkel, B. Kopp, G. Müller, K. Villringer, A. Villringer, E. Taub, and H. Flor. 1999. Constraint-induced movement therapy for motor recovery in chronic stroke patients. Archives of Physical Medicine and Rehabilitation 80, 6 (1999), 624--628.Google ScholarGoogle ScholarCross RefCross Ref
  73. G. Kwakkel. 2006. Impact of intensity of practice after stroke: Issues for considertion. Disability 8 Rehabilitation 28, 13--14 (2006), 823--830.Google ScholarGoogle Scholar
  74. C. E. Lang, J. R. MacDonald, D. S. Reisman, L. Boyd, T. J. Kimberley, S. M. Schindler-Ivens, T. G. Hornby, S. A. Ross, and P. L. Sheets. 2009. Observation of amounts of movement practice provided during stroke rehabilitation. Archives of Physical Medicine and Rehabilitation 90, 10 (2009), 1692--1698.Google ScholarGoogle ScholarCross RefCross Ref
  75. B. S. Lange, P. Requejo, S. M. Flynn, A. A. Rizzo, F. J. Valero-Cuevas, L. Baker, and C. Winstein. 2010. The potential of virtual reality and gaming to assist successful aging with disability. Physical Medicine and Rehabilitation Clinics 21, 2 (2010), 339--356.Google ScholarGoogle Scholar
  76. P. Langhorne, J. Bernhardt, and G. Kwakkel. 2011. Stroke rehabilitation. The Lancet 377, 9778 (2011), 1693--1702.Google ScholarGoogle Scholar
  77. G. Lee. 2013. Effects of training using video games on the muscle strength, muscle tone, and activities of daily living of chronic stroke patients. Journal of Physical Therapy Science 25, 5 (2013), 595--597.Google ScholarGoogle ScholarCross RefCross Ref
  78. S. I. Lee, X. Liu, S. Rajan, N. Ramasarma, E. K. Choe, and P. Bonato. 2019. A novel upper-limb function measure derived from finger-worn sensor data collected in a free-living setting. PloS One 14, 3 (2019), e0212484.Google ScholarGoogle Scholar
  79. E. J. Lenze, M. C. Munin, M. A. Dew, J. C. Rogers, K. Seligman, B. H. Mulsant, and C. F. Reynolds III. 2004. Adverse effects of depression and cognitive impairment on rehabilitation participation and recovery from hip fracture. International Journal of Geriatric Psychiatry 19, 5 (2004), 472--478.Google ScholarGoogle ScholarCross RefCross Ref
  80. M. F. Levin, J. A. Kleim, and S. L. Wolf. 2009. What do motor “recovery” and “compensation” mean in patients following stroke? Neurorehabil Neural Repair 23, 4 (2009), 313--319.Google ScholarGoogle ScholarCross RefCross Ref
  81. G. N. Lewis and J. A. Rosie. 2012. Virtual reality games for movement rehabilitation in neurological conditions: How do we meet the needs and expectations of the users? Disability and Rehabilitation 34, 22 (2012), 1880--1886.Google ScholarGoogle ScholarCross RefCross Ref
  82. C. Liu, P. Agrawal, N. Sarkar, and S. Chen. 2009. Dynamic difficulty adjustment in computer games through real-time anxiety-based affective feedback. International Journal of Human-Computer Interaction 25, 6 (2009), 506--529.Google ScholarGoogle ScholarCross RefCross Ref
  83. K. Lohse, C. G. E. Hilderman, K. L. Cheung, S. Tatla, and H. F. Michael Van der Loos. 2014. Virtual reality therapy for adults post-stroke: A systematic review and meta-analysis exploring virtual environments and commercial games in therapy. PLOS One 9, 3 (2014), e93318.Google ScholarGoogle ScholarCross RefCross Ref
  84. K. Lohse, N. Shirzad, A. Verster, N. Hodges, and H. F. Machiel Van der Loos. 2013. Video games and rehabilitation: Using design principles to enhance engagement in physical therapy. Journal of Neurologic Physical Therapy 37, 4 (2013), 166--175.Google ScholarGoogle ScholarCross RefCross Ref
  85. N. Maclean, P. Pound, C. Wolfe, and A. Rudd. 2000. Qualitative analysis of stroke patients’ motivation for rehabilitation. Bmj 321, 7268 (2000), 1051--1054.Google ScholarGoogle Scholar
  86. S. Mader, S. Natkin, and G. Levieux. 2012. How to analyse therapeutic games: The player/game/therapy model. In Proceedings of the International Conference on Entertainment Computing.Google ScholarGoogle Scholar
  87. Wendy L. Magee and Jane W. Davidson. 2002. The effect of music therapy on mood states in neurological patients: A pilot study. Journal of Music Therapy 39, 1 (2002), 20--29.Google ScholarGoogle ScholarCross RefCross Ref
  88. D. G. Manlapaz, L. A. Silverio, J. A. Navarro, M. F. Ang, M. Regacho, K. A. Canaberal, and R. B. Dela Cruz. 2010. Effectiveness of using nintendo wii in rehabilitation of chronic stroke patients with upper limb hemiparesis. Hong Kong Physiotherapy Journal 28, 1 (2010), 25.Google ScholarGoogle ScholarCross RefCross Ref
  89. C. McKinstry, R. Allen, M. Courtney, and L. Oke. 2009. Why occupational therapy needs evidence of participation in continuing professional development. Australian Occupational Therapy Journal 56, 2 (2009), 140--143.Google ScholarGoogle ScholarCross RefCross Ref
  90. H. M. Mentis, A. Komlodi, K. Schrader, M. Phipps, A. Gruber-Baldini, K. Yarbrough, and L. Shulman. 2017. Crafting a view of self-tracking data in the clinical visit. In Proceedings of the 2017 CHI Conference on Human Factors in Computing Systems.Google ScholarGoogle Scholar
  91. H. M. Mentis, R. Shewbridge, S. Powell, M. Armstrong, P. Fishman, and L. Shulman. 2016. Co-interpreting movement with sensors: Assessing Parkinson’s patients’ deep brain stimulation programming. Human-Computer Interaction 31, 3--4 (2016), 227--260.Google ScholarGoogle ScholarDigital LibraryDigital Library
  92. Matjaz Mihelj, Domen Novak, and Marko Munih. 2009. Emotion-aware system for upper extremity rehabilitation. In Proceedings of the 2009 Virtual Rehabilitation International Conference. IEEE, 160--165.Google ScholarGoogle ScholarCross RefCross Ref
  93. K. Morrow, C. Docan, G. Burdea, and A. Merians. 2006. Low-cost virtual rehabilitation of the hand for patients post-stroke. In Proceedings of the 2006 International Workshop on Virtual Rehabilitation.Google ScholarGoogle Scholar
  94. A. A. Mullick, S. K. Subramanian, and M. F. Levin. 2015. Emerging evidence of the association between cognitive deficits and arm motor recovery after stroke: A meta-analysis. Restorative Neurology and Neuroscience 33, 3 (2015), 389--403.Google ScholarGoogle ScholarCross RefCross Ref
  95. Sangeetha Nayak, Barbara L. Wheeler, Samuel C. Shiflett, and Sandra Agostinelli. 2000. Effect of music therapy on mood and social interaction among individuals with acute traumatic brain injury and stroke. Rehabilitation Psychology 45, 3 (2000), 274.Google ScholarGoogle ScholarCross RefCross Ref
  96. NEOFECT Rehabilitation Solutions. 2018. RAPAEL Smart Board | NEOFECT. Retrieved from http://www.neofect.com/en/product/boards.Google ScholarGoogle Scholar
  97. E. Norrby and A. L. Bellner. 1995. The helping encounter: Occupational therapists’ perception of therapeutic relationships. Scandinavian Journal of Caring Sciences 9, 1 (1995), 41--46.Google ScholarGoogle ScholarCross RefCross Ref
  98. G. M. S. Nys, M. J. E. van Zandovoort, P. L. M. de Kort, B. P. W. Jansen, E. H. F. de Haan, and L. J. Kappelle. 2007. Cognitive diorders in acute stroke: Prevalence and clinical determinants. Cerebrovascular Diseases 23, 5--6 (2007), 408--416.Google ScholarGoogle ScholarCross RefCross Ref
  99. Brandon Oubre, Jean-Francois Daneault, Hee-Tae Jung, Kallie Whritenour, Jose Garcia Vivas Miranda, Joonwoo Park, Taekyeong Ryu, Yangsoo Kim, and Sunghoon Ivan Lee. 2020. Estimating upper-limb impairment level in stroke survivors using wearable inertial sensors and a minimally-burdensome motor task. IEEE Transactions on Neural Systems and Rehabilitation Engineering 28, 3 (2020), 601--611.Google ScholarGoogle ScholarCross RefCross Ref
  100. J. Park, H. Jung, J.-F. Daneault, S. Park, T. Ryu, Y. Kim, and S. I. Lee. 2018. Effectiveness of the RAPAEL smart board for upper limb therapy in stroke survivors: A pilot controlled trial. In Proceedings of the 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society.Google ScholarGoogle Scholar
  101. Myung-seok Park and Moon-soo Kim. 1992. Communication practices in Korea. Communication Quarterly 40, 4 (1992), 398--404.Google ScholarGoogle ScholarCross RefCross Ref
  102. T. Park, I. Hwang, U. Lee, S. I. Lee, C. Yoo, Y. Lee, H. Jang, S. P. Choe, S. Park, and J. Song. 2012. ExerLink: Enabling pervasive social exergames with heterogeneous exercise devices. In Proceedings of the 10th International Conference on Mobile Systems, Applications, and Services.Google ScholarGoogle Scholar
  103. T. Park, U. Lee, B. Lee, H. Lee, S. Son, S. Song, and J. Song. 2013. ExerSync: Interpersonal synchrony in social exergames. In Proceedings of the 2013 Conference on Computer Supported Cooperative Work Companion.Google ScholarGoogle Scholar
  104. S. M. Peloquin. 2003. The therapeutic relationship: Manifestations and challenges in occupational therapy. In Willard and Spackman’s Occupational Therapy, E. B. Crepeau, E. S. Cohn, and B. A. Boyt Schell (Eds.). Lippincott Williams and Wilkins, Philadelphia, PA, 151--170.Google ScholarGoogle Scholar
  105. W. Peng, J. Lin, K. Pfeiffer, and B. Winn. 2012. Need satisfaction supportive game feature as motivational determinants: An experimental study of a self-determination theory guided exergame. Media Psychology 15, 2 (2012), 175--196.Google ScholarGoogle ScholarCross RefCross Ref
  106. M. Pickrell, E. van den Hoven, and B. Bongers. 2017. Exploring in-hospital rehabilitation exercises for stroke patients: Informing interaction design. In Proceedings of the Australian Computer-Human Interaction Conference.Google ScholarGoogle Scholar
  107. B. Ploderer, J. Fong, A. Withana, M. Klaic, S. Nair, V. Crocher, F. Vetere, and S. Nanayakkara. 2016. ArmSleeve: A patient monitoring system to support occupational therapists in stroke rehabilitation. In Proceedings of the 2016 ACM Conference on Designing Interactive Systems.Google ScholarGoogle Scholar
  108. T. Pohjasvaara, R. Vataja, A. Laeppavouri, M. Kaste, and T. Erkinjuntti. 2001. Depression is an independent predictor of poor long-term functional outcome post-stroke. European Journal of Neurology 8, 4 (2001), 315--319.Google ScholarGoogle ScholarCross RefCross Ref
  109. G. P. Prigatano. 2015. The importance of the patient’s subjective experience in stroke rehabilitation. Topics in Stroke Rehabilitation 18, 1 (2015), 30--34.Google ScholarGoogle ScholarCross RefCross Ref
  110. J. O. Prochaska, C. A. Redding, and K. E. Evers. 2015. The transtheoretical model and stages of change. In Health Behavior: Theory, Research, and Practice, K. Glanz (Ed.). Jossey Bass, San Francisco, CA, 125--148.Google ScholarGoogle Scholar
  111. Heather Purdie and Steve Baldwin. 1994. Music therapy: Challenging low self-esteem in people with a stroke. Journal of British Music Therapy 8, 2 (1994), 19--24.Google ScholarGoogle ScholarCross RefCross Ref
  112. M. V. Radomski. 2011. THE ISSUE ISmore than good intentions: Advancing adherence to therapy recommendations. The American Journal of Occupational Therapy 65, 4 (2011), 471--477.Google ScholarGoogle ScholarCross RefCross Ref
  113. D. Rand, N. Givon, H. Weingarden, A. Nota, and G. Zeilig. 2014. Eliciting upper extremity purposeful movements using video games: A comparison with traditional therapy for stroke rehabilitation. Neurorehabilitation and Neural Repair 28, 8 (2014), 733--739.Google ScholarGoogle ScholarCross RefCross Ref
  114. D. Rand, R. Kizony, and P. L. Weiss. 2004. Virtual reality rehabilitation for all: Vivid GX versus sony playstation II eyetoy. In Proceedings of the International Conference on Disability, Virtual Reality 8 Associated Technology.Google ScholarGoogle Scholar
  115. R. Ranganathan, R. Wang, R. Gebara, and S. Biswas. 2017. Detecting compensatory trunk movements in stroke survivors using a wearable system. In Proceedings of the 2017 Workshop on Wearable Systems and Applications.Google ScholarGoogle Scholar
  116. L. G. Richards, N. K. Latham, D. U. Jette, L. Rosenberg, R. J. Smout, and G. DeJong. 2005. Characterizing occupational therapy practice in stroke rehabilitation. Archives of Physical Medicine and Rehabilitation 86, 12 (2005), 51--60.Google ScholarGoogle ScholarCross RefCross Ref
  117. Jesús Joel Rivas, Felipe Orihuela-Espina, Lorena Palafox, Nadia Berthouze, María del Carmen Lara, Jorge Hernández-Franco, and Enrique Sucar. 2018. Unobtrusive inference of affective states in virtual rehabilitation from upper limb motions: A feasibility study. IEEE Transactions on Affective Computing 11, 3 (2018), 470--481.Google ScholarGoogle ScholarCross RefCross Ref
  118. R. M. Ryan, C. S. Rigby, and A. Przybylski. 2006. The motivational pull of video games: A self-determination theory approach. Motivation and Emotion 30 (2006), 347--363.Google ScholarGoogle ScholarCross RefCross Ref
  119. L. R. A. D. Santos, A. A. Carregosa, M. R. Masruha, P. A. D. Santos, M. L. D. S. Coélho, D. D. Ferraz, and N. M. D. S. Ribeiro. 2015. The use of Nintendo wii in the rehabilitation of poststroke patients: A systematic review. Journal of Stroke and Cerebrovascular Diseases 24, 10 (2015), 2298--2305.Google ScholarGoogle ScholarCross RefCross Ref
  120. K. Sathian, L. J. Buxbaum, L. G. Cohen, J. W. Krakauer, C. E. Lang, M. Corbetta, and S. M. Fitzpatrick. 2011. Neurological principles and rehabilitation of action disorders: Common clinical deficits. Neurorehabilitation and Neural Repair 25, 5 (2011), 21S--32S.Google ScholarGoogle ScholarCross RefCross Ref
  121. L. Sawaki, A. J. Butler, X. Leng, P. A. Wassenaar, Y. M. Mohammad, S. Blanton, K. Sathian, D. S. Nichols-Larsen, S. L. Wolf, D. C. Good, and G. F. Wittenberg. 2008. Constraint-induced movement therapy results in increased motor map area in subjects 3 to 9 months after stroke. Neurorehabilitation and Neural Repair 22, 5 (2008), 505--515.Google ScholarGoogle ScholarCross RefCross Ref
  122. Rebecca S. Schaefer. 2014. Auditory rhythmic cueing in movement rehabilitation: Findings and possible mechanisms. Philosophical Transactions of the Royal Society B: Biological Sciences 369, 1658 (2014), 20130402.Google ScholarGoogle ScholarCross RefCross Ref
  123. M. Schonberger, F. Humleand P. Zeeman, and T. W. Teasdale. 2006. Subjective outcome of brain injury rehabilitation in relation to the therapeutic working alliance, client compliance, and awareness. Brain Injury 20, 12 (2006), 1271--1282.Google ScholarGoogle ScholarCross RefCross Ref
  124. G. S. Seale, I. M. Berges, K. J. Ottenbacher, and G. V. Ostir. 2010. Change in positive emotion and recovery of functional status following stroke. Rehabilitation Psychology 55, 1 (2010), 33--39.Google ScholarGoogle ScholarCross RefCross Ref
  125. H. Sin and G. Lee. 2013. Additional virtual reality training using Xbox kinect in stroke survivors with hemiplegia. American Journal of Physical Medicine 8 Rehabilitation 92, 10 (2013), 871--880.Google ScholarGoogle Scholar
  126. Aneesha Singh, Stefano Piana, Davide Pollarolo, Gualtiero Volpe, Giovanna Varni, Ana Tajadura-Jiménez, Amanda CdeC Williams, Antonio Camurri, and Nadia Bianchi-Berthouze. 2016. Go-with-the-flow: Tracking, analysis and sonification of movement and breathing to build confidence in activity despite chronic pain. Human--Computer Interaction 31, 3--4 (2016), 335--383.Google ScholarGoogle ScholarDigital LibraryDigital Library
  127. J. D. Smeddinck, M. Herrlich, and R. Malaka. 2015. Exergames for physiotherapy and rehabilitation: A medium-term situated study of motivational aspects and impact on functional reach. In Proceedings of the 2015 CHI Conference Extended Abstracts on Human Factors in Computing Systems.Google ScholarGoogle Scholar
  128. T. L. Snavely. 2014. History and Analysis of eSport Systems. Master’s thesis. The University of Texas at Austin, Texas.Google ScholarGoogle Scholar
  129. H. Song, S. Lee, H. Kim, G. Jang, Y. Choi, and D. Yang. 2016. RAPAEL: Wearable technology and serious game for rehabilitation. In Proceedings of the 2016 CHI Conference Extended Abstracts on Human Factors in Computing Systems.Google ScholarGoogle Scholar
  130. L. E. Sucar, F. Oriheula-Espina, R. L. Velazquez, D. J. Reinkensmeyer, R. Leder, and J. Hernández-Franco. 2014. Gesture therapy: An upper limb virtual reality-based motor rehabilitation platform. IEEE Transactions ON Neural Systems AND Rehabilitation Engineering 22, 3 (2014), 634--543.Google ScholarGoogle ScholarCross RefCross Ref
  131. E. Taub, G. Uswatte, V. W. Mark, and D. M. Morris. 2006. The learned nonuse phenomenon: Implications for rehabilitation. Eura Medicophys 42, 3 (2006), 241--55.Google ScholarGoogle Scholar
  132. R. W. Teasell and L. Kalra. 2004. What’s new in stroke rehabilitation. Stroke 35, 2 (2004), 383--385.Google ScholarGoogle ScholarCross RefCross Ref
  133. Michaelh Thaut, Jamesc Gardiner, Dawn Holmberg, Javan Horwitz, Luanne Kent, Garrett Andrews, Beth Donelan, and Geraldr Mcintosh. 2009. Neurologic music therapy improves executive function and emotional adjustment in traumatic brain injury rehabilitation. Annals of the New York Academy of Sciences 1169, 1 (2009), 406--416.Google ScholarGoogle ScholarCross RefCross Ref
  134. G. Thielman. 2010. Rehabilitation of reaching poststroke: A randomized pilot investigation of tactile versus auditory feedback for trunk control. Journal of Neurologic Physical Therapy 34, 3 (2010), 138--144.Google ScholarGoogle ScholarCross RefCross Ref
  135. K. Thomson, A. Pollock, C. Bugge, and M. Brady. 2014. Commercial gaming devices for stroke upper limb rehabilitation: A systematic review. International Journal of Stroke 9, 4 (2014), 479--488.Google ScholarGoogle ScholarCross RefCross Ref
  136. Andrew K. Treister, Maya N. Hatch, Steven C. Cramer, and Eric Y. Chang. 2017. Demystifying poststroke pain: From etiology to treatment. PM R: The Journal of Injury, Function, and Rehabilitation 9, 1 (2017), 63--75.Google ScholarGoogle ScholarCross RefCross Ref
  137. J. Tretriluxana, J. Gordon, B. E. Fisher, and C. J. Winstein. 2009. Hemisphere specific impairments in reach-to-grasp control after stroke: Effects of object size. Neurorehabilitation and Neural Repair 23, 7 (2009), 679--691.Google ScholarGoogle ScholarCross RefCross Ref
  138. B. A. Valdés, A. N. Schneider, and H. F. M. Van der Loos. 2017. Reducing trunk compensation in stroke survivors: A randomized crossover trial comparing visual and force feedback modalities. Archives of Physical Medicine and Rehabilitation 98, 10 (2017), 1932--1940.Google ScholarGoogle ScholarCross RefCross Ref
  139. F. B. Van Meulen, B. Klaassen, J. Held, J. Reenalda, J. H. Buurke, B.-J. F. Van Beijnum, A. Luft, and P. H. Veltink. 2016. Objective evaluation of the quality of movement in daily life after stroke. Frontiers in Bioengineering and Biotechnology 3, 210 (2016), 1--11.Google ScholarGoogle ScholarCross RefCross Ref
  140. P. M. van Vliet and G. Wulf. 2006. Extrinsic feedback for motor learning after stroke: What is the evidence? Disability and Rehabilitation 28, 13--14 (2006), 831--840.Google ScholarGoogle ScholarCross RefCross Ref
  141. Frederike van Wijck, Don Knox, Colin Dodds, Gianna Cassidy, Gillian Alexander, and Raymond MacDonald. 2012. Making music after stroke: Using musical activities to enhance arm function. Annals of the New York Academy of Sciences 1252, 1 (2012), 305--311.Google ScholarGoogle ScholarCross RefCross Ref
  142. P. Wang, R. K. C. Koh, C. G. Boucharenc, and C. Yen. 2016. Lights out: An interactive tangible game for training of post-stroke reaching. In Proceedings of the CHI Conference Extended Abstracts on Human Factors in Computing Systems.Google ScholarGoogle Scholar
  143. A. Welch and P. Dawson. 2005. Closing the gap: Collaborative learning as a strategy to embed evidence within occupational therapy practice. Journal of Evaluation in Clinical Practice 12, 2 (2005), 227--238.Google ScholarGoogle ScholarCross RefCross Ref
  144. C. J. Winsten. 1991. Knowledge of results and motor learning--implications of physical therapy. Physical Therapy 71, 2 (1991), 140--149.Google ScholarGoogle ScholarCross RefCross Ref
  145. C. T. Wittek, T. R. Finserås, S. Pallesen, R. A. Mentzoni, D. Hanss, M. D. Griffiths, and H. Molde. 2016. Prevalence and predictors of video game addiction: A study based on a national representative sample of gamers. International Journal of Mental Health Addiction 14, 5 (2016), 672--686.Google ScholarGoogle ScholarCross RefCross Ref
  146. S. L. Wolf, P. A. Catlin, M. Ellis, A. L. Archer, B. Morgan, and A. Piacentino. 2001. Assessing wolf motor function test as outcome measure for research in patients after stroke. Stroke 32, 7 (2001), 1635--1639.Google ScholarGoogle ScholarCross RefCross Ref
  147. G. Yavuzer, A. Senel, M. B. Atay, and H. J. Stam. 2008. “Playstation eyetoy games” improve upper extremity-related motor functioning in subacute stroke: A randomized controlled clinical trial. European Journal of Physical and Rehabilitation Medicine 44, 3 (2008), 237--244.Google ScholarGoogle Scholar
  148. J. Yim and T. C. Graham. 2007. Using games to increase exercise motivation. In Proceedings of the 2007 Conference on Future Play.Google ScholarGoogle Scholar
  149. H. F. Yu, N. W. Guo, H. Y. Chen, and C. P. Liang. 1993. Factors affecting stroke patients’ motivations for rehabilitation. The Kaohsiung Journal of Medical Sciences 9, 5 (1993), 305--316.Google ScholarGoogle Scholar
  150. A. S. Zigmond and R. P. Snaith. 1983. The hospital anxiety and depression scale. Acta Psychiatrica Scandinavica 67, 6 (1983), 361--370.Google ScholarGoogle ScholarCross RefCross Ref

Index Terms

  1. Rehabilitation Games in Real-World Clinical Settings: Practices, Challenges, and Opportunities

      Recommendations

      Comments

      Login options

      Check if you have access through your login credentials or your institution to get full access on this article.

      Sign in

      Full Access

      • Published in

        cover image ACM Transactions on Computer-Human Interaction
        ACM Transactions on Computer-Human Interaction  Volume 27, Issue 6
        December 2020
        267 pages
        ISSN:1073-0516
        EISSN:1557-7325
        DOI:10.1145/3434240
        Issue’s Table of Contents

        Copyright © 2020 ACM

        Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

        Publisher

        Association for Computing Machinery

        New York, NY, United States

        Publication History

        • Published: 8 November 2020
        • Accepted: 1 July 2020
        • Revised: 1 May 2020
        • Received: 1 July 2019
        Published in tochi Volume 27, Issue 6

        Permissions

        Request permissions about this article.

        Request Permissions

        Check for updates

        Qualifiers

        • research-article
        • Research
        • Refereed

      PDF Format

      View or Download as a PDF file.

      PDF

      eReader

      View online with eReader.

      eReader

      HTML Format

      View this article in HTML Format .

      View HTML Format