Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter (O) November 5, 2020

Halogen bonding in crystals of free 1,2-diiodo-ethene (C2H2I2) and its π-complex [CpMn(CO)2](π-C2H2I2)

  • Yury V. Torubaev EMAIL logo and Ivan V. Skabitsky

Abstract

1,2-trans-diiodo-ethene (C2H2I2) – is an overlooked halogen bond donor, which demonstrate the distinct similarity of the geometry and directionality of I···I halogen bonds around the iodine atoms in its native and CpMn(CO)2(C2H2I2) π-complex crystals. Distortion of the planar geometry of C2H2I2 upon the π-coordination result the distortion of the native planar layered geometry of C2H2I2, so that [CpMn(CO)2](π-C2H2I2) features more complex I···I XB assisted 3D network. Unusual structural parallels between the native C2H2I2 crystals and solid iodine are discussed.


Corresponding author: Yury V. Torubaev, N.S. Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, Moscow,Russia, E-mail

Funding source: Russian Scientific Foundation

Award Identifier / Grant number: project № 19-13-00338

Acknowledgments

XRD experiments were performed using the equipment of shared experimental facilities supported by Kurnakov Institute of General and Inorganic Chemistry RAS.

  1. Author contribution: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: This work is supported by Russian Scientific Foundation (grant No 19-13-00338).

  3. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

References

1. Usoltsev, A. N., Adonin, S. A., Novikov, A. S., Abramov, P. A., Sokolov, M. N., Fedin, V. P. Chlorotellurate(iv) supramolecular associates with ‘trapped’ Br2: features of non-covalent halogen⋯halogen interactions in crystalline phases. CrystEngComm 2020, 11, 1985–1990; https://doi.org/10.1039/c9ce01820d.10.1039/C9CE01820DSearch in Google Scholar

2. Adonin, S. A., Usoltsev, A. N., Novikov, A. S., Kolesov, B. A., Fedin, V. P., Sokolov, M. N. One- and two-dimensional iodine-rich iodobismuthate(III) complexes: structure, optical properties, and features of halogen bonding in the solid state. Inorg. Chem. 2020, 5, 3290–3296; https://doi.org/10.1021/acs.inorgchem.9b03734.10.1021/acs.inorgchem.9b03734Search in Google Scholar PubMed

3. Ivanov, D. M., Kinzhalov, M. A., Novikov, A. S., Ananyev, I. V., Romanova, A. A., Boyarskiy, V. P., Haukka, M., Kukushkin, V. Y. H2C(X)–X···X– (X = Cl, Br) halogen bonding of dihalomethanes. Cryst. Growth Des. 2017, 3, 1353–1362; https://doi.org/10.1021/acs.cgd.6b01754.10.1021/acs.cgd.6b01754Search in Google Scholar

4. Novikov, A. S., Ivanov, D. M., Avdontceva, M. S., Kukushkin, V. Y. Diiodomethane as a halogen bond donor toward metal-bound halides. CrystEngComm 2017, 18, 2517–2525; https://doi.org/10.1039/c7ce00346c.10.1039/C7CE00346CSearch in Google Scholar

5. Zelenkov, L. E., Ivanov, D. M., Avdontceva, M. S., Novikov, A. S., Bokach, N. A. Tetrachloromethane as halogen bond donor toward metal-bound halides. Z. für Kristallogr. - Cryst. Mater. 2019, 1, 9–17; https://doi.org/10.1515/zkri-2018-2111.10.1515/zkri-2018-2111Search in Google Scholar

6. Ivanov, D. M., Novikov, A. S., Ananyev, I. V., Kirina, Y. V., Kukushkin, V. Y. Halogen bonding between metal centers and halocarbons. Chem. Commun. 2016, 32, 5565–5568; https://doi.org/10.1039/c6cc01107a.10.1039/C6CC01107ASearch in Google Scholar PubMed

7. Tiekink, E. R. T. Supramolecular assembly based on “emerging” intermolecular interactions of particular interest to coordination chemists. Coord. Chem. Rev 2017, 345, 209; https://doi.org/10.1016/j.ccr.2017.01.009.10.1016/j.ccr.2017.01.009Search in Google Scholar

8. Bertani, R., Sgarbossa, P., Venzo, A., Lelj, F., Amati, M., Resnati, G., Pilati, T., Metrangolo, P., Terraneo, G. Halogen bonding in metal–organic–supramolecular networks. Coord. Chem. Rev. 2010, 254, 677; https://doi.org/10.1016/j.ccr.2009.09.035.10.1016/j.ccr.2009.09.035Search in Google Scholar

9. Troff, R. W., Mäkelä, T., Topić, F., Valkonen, A., Raatikainen, K., Rissanen, K. Eur. J. Org Chem. 2013, 9, 1617; https://doi.org/10.1002/ejoc.201201512.10.1002/ejoc.201201512Search in Google Scholar

10. Cavallo, G., Metrangolo, P., Milani, R., Pilati, T., Priimagi, A., Resnati, G., Terraneo, G. The halogen bond. Chem. Rev. 2016, 4, 2478–2601; https://doi.org/10.1021/acs.chemrev.5b00484.10.1021/acs.chemrev.5b00484Search in Google Scholar PubMed PubMed Central

11. Pasynskii, A. A., Torubaev, Yu. V., Lyakina, A. Yu., Valiullina, R. I., Lysenko, K. A. Synthesis and molecular structure of π-acetylene tetracobaltdecacarbonyl butterfly clusters [(CO)8Co4(μ-CO)2](μ-C2R2), where R = CH2OH or CH2SCMe3. Zh. Neorg. Khim. Russ. (Russ. J. Inorg. Chem) 2000, 6, 934–939.Search in Google Scholar

12. Pasynskii, A. A., Torubaev, Yu. V., Lyakina, A. Yu., Valiullina, R. I., Aleksandrov, G. G., Lysenko, K. A. Synthesis and molecular structures of the dicobalt carbonylphosphine π-complexes containing acetylene with functional groups CH2OH and CH2SCMe3. Koord. Khim. Russ. (Russ. J. Coord. Chem.) 2000, 2, 112–116.Search in Google Scholar

13. Pasynskii, A. A, Torubaev, Yu. V., Kitaev, P. S., Rubinshtein, L. I., Eremenko, I. L., Lysenko, K. A. Syntheses and molecular structures of cyclopentadienylmanganese dicarbonyl diphenylacetylene and butynediol complexes. Koord. Khim. Russ. (Russ. J. Coord. Chem.) 1991, 11, 762–766.Search in Google Scholar

14. Pasynskii, A.A., Torubaev, Yu.V., Kitaev, P.S., Lyakina, A.Yu., Lysenko, K.A. Synthesis and molecular structure of the manganese tungsten carbonyl complex with an isomerization product of monothiolate-substituted 2-Butyne-1,4-diol as a bridging ligand. Russ. J. Inorg. Chem 2000, 45, 46–49.Search in Google Scholar

15. Pasynskii, A. A., Torubaev, Y. V., Denisov, F. S., Lyakina, A. Y., Valiullina, R. I., Alexandrov, G. G., Lyssenko, K. A. Synthesis and molecular structures of Co2(CO)6−n(PPh3)n[μ-C2(CH2R)2] (R=CH2 OH or CH2SCMe3) derivatives containing chelated [CpFe(CO)2]2Sn or W(CO)4 fragments. J. Organomet. Chem. 2000, 1–2, 196–199; https://doi.org/10.1016/s0022-328x(99)00706-8.10.1016/S0022-328X(99)00706-8Search in Google Scholar

16. Pasynskii, A. A., Grechkin, A. N., Denisov, F. S., Torubaev, Yu. V., Aleksandrov, G. G., Dobrokhotova, Zh. V., Lysenko, K. A. Synthesis and chemical properties of bis(cyclopentadienyldicarbonyliron) bis(phenylethynyl)tin. Molecular structures of [CpFe(CO)2]2Sn (C≡CPh)(μ-C≡CPh)Co2(CO)6 and [CpFe(CO)2(OOCCF3)Sn(μ-OH)]2. Russ. J. Inorg. Chem 2002, 47, 1311–1315.Search in Google Scholar

17. Torubaev, Y. V., Lyssenko, K. A., Barzilovich, P. Y., Saratov, G. A., Shaikh, M. M., Singh, A., Mathur, P. Self-assembly of conducting cocrystals via iodine–--π(Cp) interactions. CrystEngComm 2017, 19, 5114–5121; https://doi.org/10.1039/c7ce00857k.10.1039/C7CE00857KSearch in Google Scholar

18. Torubaev, Y. V., Skabitskiy, I. V. The energy frameworks of aufbau synthon modules in 4-cyanopyridine co-crystals. CrystEngComm 2019, 46, 7057–7068; https://doi.org/10.1039/c9ce01174a.10.1039/C9CE01174ASearch in Google Scholar

19. Torubaev, Y. V., Skabitskiy, I. V., Rusina, P., Pasynskii, A. A., Rai, D. K., Singh, A. Organometallic halogen bond acceptors: directionality, hybrid cocrystals precipitation, and blueshifted CO ligand vibrational band. CrystEngComm 2018, 20, 2258–2266; https://doi.org/10.1039/c7ce02185b.10.1039/C7CE02185BSearch in Google Scholar

20. Dewar, M. J. S. A. Review of the π-complex theory. Bull. Chem. Soc. France 1951, 18, 71–79.Search in Google Scholar

21. Chatt, J., Duncanson, L. A. Olefin coordination compounds. III. Infrared spectra and structure: attempted preparation of acetylene compounds. J. Chem. Soc. 1953, 2939–2947; https://doi.org/10.1039/jr9530002939.10.1039/jr9530002939Search in Google Scholar

22. Cedeño, D. L., Sniatynsky, R. Metal-olefin interactions in M(CO)5(cycloolefin)(M = Cr, Mo, W; cycloolefin = cyclopropene to cyclooctene): strain relief and metal-olefin bond strength. Organometallics 2005, 24, 3882–3890; https://doi.org/10.1021/om050331q.10.1021/om050331qSearch in Google Scholar

23. Crabtree, R. H. The Organometallic Chemistry of Transition Metals, 4th ed.; Wiley: New York, 2005; p. 126.10.1002/0471718769Search in Google Scholar

24. Hettstedt, C., Mayer, P., Karaghiosoff, K. Halogen bonding in the crystal structures of 1,2-diiodo-alkenes. New J. Chem. 2015, 39, 8522–8533; https://doi.org/10.1039/c5nj00821b.10.1039/C5NJ00821BSearch in Google Scholar

25. Fleming, I. Molecular Orbitals and Organic Chemical Reactions, Student ed.; Wiley: Chichester, West Sussex, U.K., 2009.10.1002/9780470684306Search in Google Scholar

26. Klug, H. P. A study of the crystal structures of sym-diiodoethane and sym-diiodoethylene. Z. für Kristallogr. - Cryst. Mater. 1935, 90, 1–6, 495; https://doi.org/10.1524/zkri.1935.90.1.495.10.1524/zkri.1935.90.1.495Search in Google Scholar

27. Spackman, M. A., Jayatilaka, D. Hirshfeld surface analysis. CrystEngComm 2009, 11, 19–32; https://doi.org/10.1039/b818330a.10.1039/B818330ASearch in Google Scholar

28. Turner, M. J., Thomas, S. P., Shi, M. W., Jayatilaka, D., Spackman, M. A. Energy frameworks: insights into interaction anisotropy and the mechanical properties of molecular crystals. Chem. Commun. 2015, 51, 3691–3928; https://doi.org/10.1039/c4cc09074h.10.1039/C4CC09074HSearch in Google Scholar

29. Riplinger, C., Pinski, P., Becker, U., Valeev, E. F., Neese, F.. J. Chem. Phys. 2016, 144, 024109; https://doi.org/10.1063/1.4939030.10.1063/1.4939030Search in Google Scholar

30. Neese, F. Software update: the ORCA program system, version 4.0. WIREs Comput Mol Sci 2017, e1327; https://doi.org/10.1002/wcms.1327.10.1002/wcms.1327Search in Google Scholar

31. Weigend, F., Ahlrichs, R. Balanced basis sets of split valence, triple zeta valence and quadruple zeta valence quality for H to Rn: design and assessment of accuracy. Phys. Chem. Chem. Phys. 2005, 7, 3297; https://doi.org/10.1039/b508541a.10.1039/b508541aSearch in Google Scholar

32. Hellweg, A., Hattig, C., Hofener, S., Klopper, W. Theor. Chem. Acc. 2007, 117, 587; https://doi.org/10.1007/s00214-007-0250-5.10.1007/s00214-007-0250-5Search in Google Scholar

33. Klopper, W., Kutzelnigg, W. THEOCHEM 1986, 135, 339–356; https://doi.org/10.1016/0166-1280(86)80068-9.10.1016/0166-1280(86)80068-9Search in Google Scholar

34. Kutzelnigg, W. Int. J. Quant. Chem. 1994, 51, 447–463; https://doi.org/10.1002/qua.560510612.10.1002/qua.560510612Search in Google Scholar

35. Zhong, S. J., Barnes, E. C., Petersson, G. A.. J. Chem. Phys. 2008, 129, 184116; https://doi.org/10.1063/1.3009651.10.1063/1.3009651Search in Google Scholar

36. Truhlar, D. G.. Chem. Phys. Lett. 1998, 294, 45–48; https://doi.org/10.1016/s0009-2614(98)00866-5.10.1016/S0009-2614(98)00866-5Search in Google Scholar

37. Liakos, D. G., Sparta, M., Kesharwani, M. K., Martin, J. M. L., Neese, F. J. Chem. Theor. Comput. 2015, 11, 1525; https://doi.org/10.1021/ct501129s.10.1021/ct501129sSearch in Google Scholar PubMed

38. Perdew, J. P., Burke, K., Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865; https://doi.org/10.1103/physrevlett.77.3865.10.1103/PhysRevLett.77.3865Search in Google Scholar PubMed

39. Perdew, J. P., Burke, K., Ernzerhof, M. Phys. Rev. Lett. 1997, 78, 1396, (Erratum); https://doi.org/10.1103/physrevlett.78.1396.10.1103/PhysRevLett.78.1396Search in Google Scholar

40. Grimme, S., Ehrlich, S., Goerigk, L. Effect of the damping function in dispersion corrected density functional theory. J. Comput. Chem. 2011, 32, 1456; https://doi.org/10.1002/jcc.21759.10.1002/jcc.21759Search in Google Scholar PubMed

41. Grimme, S., Antony, J., Ehrlich, S., Krieg, H. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J. Chem. Phys. 2010, 132, 154104; https://doi.org/10.1063/1.3382344.10.1063/1.3382344Search in Google Scholar PubMed

42. Peterson, K. A., Figgen, D., Goll, E., Stoll, H., Dolg, M. Systematically convergent basis sets with relativistic pseudopotentials. II. Small-core pseudopotentials and correlation consistent basis sets for the post-d group 16–18 elements. J. Chem. Phys. 2003, 119, 11113–11123; https://doi.org/10.1063/1.1622924.10.1063/1.1622924Search in Google Scholar

43. Weigend, F. Accurate Coulomb-fitting basis sets for H to Rn. Phys. Chem. Chem. Phys. 2006, 8, 1057; https://doi.org/10.1039/b515623h.10.1039/b515623hSearch in Google Scholar PubMed

44. van Lenthe, E., Baerendsand, E. J., Snijders, J. B. Relativistic regular two-component Hamiltonians. J. Chem. Phys. 1993, 99, 4597; https://doi.org/10.1063/1.466059.10.1063/1.466059Search in Google Scholar

45. van Wullen, C The mechanism of Li-ion transport in the garnet Li5La3Nb2O12. J. Chem. Phys. 1998, 109, 392.10.1039/B703179CSearch in Google Scholar PubMed

46. Adamo, C., Barone, V. Toward reliable density functional methods without adjustable parameters: the PBE0 model. J. Chem. Phys. 1999, 110, 6158−6170; https://doi.org/10.1063/1.478522.10.1063/1.478522Search in Google Scholar

47. Izsák, R., Neese, F. An overlap fitted chain of spheres exchange method. J. Chem. Phys. 2011, 135, 144105; https://doi.org/10.1063/1.3646921.10.1063/1.3646921Search in Google Scholar PubMed

48. Pantazis, D. A., Neese, F. All-electron scalar relativistic basis sets for the 6p elements. Theor. Chem. Acc. 2012, 131, 1292.10.1007/s00214-012-1292-xSearch in Google Scholar

49. Lu, T., Chen, F. Multiwfn: a multifunctional wavefunction analyzer. J. Comput. Chem. 2012, 33, 580–592; https://doi.org/10.1002/jcc.22885.10.1002/jcc.22885Search in Google Scholar PubMed

50. Sheldrick, G. M. Acta Crystallogr., A short history of SHELX. 2008, A64, 112–122; https://doi.org/10.1107/s0108767307043930.10.1107/S0108767307043930Search in Google Scholar PubMed

51. Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K., Puschmann, H. OLEX2: a complete structure solution, refinement and analysis program. J. Appl. Crystallogr. 2009, 42, 339–341; https://doi.org/10.1107/s0021889808042726.10.1107/S0021889808042726Search in Google Scholar

52. Akkerman, F., Buschmann, J., Lentz, D., Luger, P., Rodel, E. Crystal and molecular structure of 1,2-difluoroethane and 1,2-diiodoethane. J.Chem.Cryst. 2003, 33, 969; https://doi.org/10.1023/a:1027494101785.10.1023/A:1027494101785Search in Google Scholar

53. Bertolotti, F., Shishkina, A. V., Forni, A., Gervasio, G., Stash, A. I., Tsirelson, V. G., Cryst. Growth Des. 2014, 14, 3587−3595; https://doi.org/10.1021/cg5005159.10.1021/cg5005159Search in Google Scholar

54. Ananikov, V. P., Kashin, A. S., Hazipov, O. V., Beletskaya, I. P., Starikova, Z. A. Highly selective catalytic synthesis of (E,E)-1,4-Diiodobuta-1,3-diene via atom-efficient addition of acetylene and iodine: a versatile (E,E)-1,3-Diene building block in cross-coupling reactions. Synlett 2011, 2021; https://doi.org/10.1055/s-0030-1261166.10.1055/s-0030-1261166Search in Google Scholar

55. Lashua, A. F., Smith, T. M., Hegui, Hu, Lihui, Wei, Allis, D. G., Sponsler, M. B., Hudson, B. S. Commensurate urea inclusion crystals with the guest (E,E)-1,4-Diiodo-1,3-Butadiene. Cryst. Growth Des 2013, 13, 3852; https://doi.org/10.1021/cg400980b.10.1021/cg400980bSearch in Google Scholar

56. Cotton, F. A., Donahue, J. P., Murillo, C. A. Polyunsaturated dicarboxylate tethers connecting dimolybdenum redox and chromophoric centers: syntheses, structures, and electrochemistry. J. Am. Chem. Soc. 2003, 125, 5436; https://doi.org/10.1021/ja029101i.10.1021/ja029101iSearch in Google Scholar PubMed

57. Gdaniec, M., Jankowski, W., Milewska, M. J., Polonski, T. Supramolecular assemblies of hydrogen-bonded carboxylic acid dimers mediated by phenyl–pentafluorophenyl stacking interactions. Angew. Chem. Int. Ed. 2003, 42, 3903; https://doi.org/10.1002/anie.200351432.10.1002/anie.200351432Search in Google Scholar PubMed

58. Coates, G. W., Dunn, A. R., Henling, L. M., Dougherty, D. A., Grubbs, R. H. Phenyl–perfluorophenyl stacking interactions: a new strategy for supermolecule construction. Angew. Chem. Int. Ed. 1997, 36, 248; https://doi.org/10.1002/anie.199702481.10.1002/anie.199702481Search in Google Scholar

59. Priimagi, A., Cavallo, G., Metrangolo, P., Resnati, G. The halogen bond in the design of functional supramolecular materials: recent advances. Acc. Chem. Res. 2013, 11, 2686–2695; https://doi.org/10.1021/ar400103r.10.1021/ar400103rSearch in Google Scholar PubMed PubMed Central

60. Dolgushin, F. M., Goloveshkin, A. S., Ananyev, I. V., Osintseva, S. V., Torubaev, Y. V., Krylov, S. S., Golub, A. S. Interplay of noncovalent interactions in antiseptic quaternary ammonium surfactant Miramistin. Acta Crystallogr. C 2019, 4, 402–411; https://doi.org/10.1107/s2053229619002961.10.1107/S2053229619002961Search in Google Scholar PubMed


Supplementary Material

The online version of this article offers supplementary material (https://doi.org/10.1515/zkri-2020-0064).


Received: 2020-06-11
Accepted: 2020-09-29
Published Online: 2020-11-05
Published in Print: 2020-12-16

© 2020 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 23.4.2024 from https://www.degruyter.com/document/doi/10.1515/zkri-2020-0064/html
Scroll to top button