Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

Generation and biobanking of patient-derived glioblastoma organoids and their application in CAR T cell testing

Abstract

Glioblastoma tumors exhibit extensive inter- and intratumoral heterogeneity, which has contributed to the poor outcomes of numerous clinical trials and continues to complicate the development of effective therapeutic strategies. Most in vitro models do not preserve the cellular and mutational diversity of parent tumors and often require a lengthy generation time with variable efficiency. Here, we describe detailed procedures for generating glioblastoma organoids (GBOs) from surgically resected patient tumor tissue using a chemically defined medium without cell dissociation. By preserving cell-cell interactions and minimizing clonal selection, GBOs maintain the cellular heterogeneity of parent tumors. We include details of how to passage and cryopreserve GBOs for continued use, biobanking and long-term recovery. In addition, we describe procedures for investigating patient-specific responses to immunotherapies by co-culturing GBOs with chimeric antigen receptor (CAR) T cells. It takes ~2–4 weeks to generate GBOs and 5–7 d to perform CAR T cell co-culture using this protocol. Competence with human cell culture, tissue processing, immunohistology and microscopy is required for optimal results.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Overview of the procedures to generate GBOs from resected tumor tissue and to co-culture GBOs with CAR T cells.
Fig. 2: GBO success rate and growth.
Fig. 3: Establishment and maintenance of GBO culture.
Fig. 4: Immunofluorescence characterization of GBOs and parent tumors.
Fig. 5: Detection of hypoxia gradients and actively proliferating cells in GBOs.
Fig. 6: GBO co-culture with CAR T cells.

Similar content being viewed by others

References

  1. Boj, S. F. et al. Organoid models of human and mouse ductal pancreatic cancer. Cell 160, 324–338 (2015).

    Article  CAS  PubMed  Google Scholar 

  2. Broutier, L. et al. Human primary liver cancer-derived organoid cultures for disease modeling and drug screening. Nat. Med. 23, 1424–1435 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Gao, D. et al. Organoid cultures derived from patients with advanced prostate cancer. Cell 159, 176–187 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Kopper, O. et al. An organoid platform for ovarian cancer captures intra- and interpatient heterogeneity. Nat. Med. 25, 838–849 (2019).

    Article  CAS  PubMed  Google Scholar 

  5. Lee, S. H. et al. Tumor evolution and drug response in patient-derived organoid models of bladder cancer. Cell 173, 515–528.e17 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Sachs, N. et al. A living biobank of breast cancer organoids captures disease heterogeneity. Cell 172, 373–386.e10 (2018).

    Article  CAS  PubMed  Google Scholar 

  7. Yan, H. H. N. et al. A comprehensive human gastric cancer organoid biobank captures tumor subtype heterogeneity and enables therapeutic screening. Cell Stem Cell 23, 882–897.e11 (2018).

    Article  CAS  PubMed  Google Scholar 

  8. Yao, Y. et al. Patient-derived organoids predict chemoradiation responses of locally advanced rectal cancer. Cell Stem Cell 26, 17–26.e6 (2020).

    Article  CAS  PubMed  Google Scholar 

  9. Tuveson, D. & Clevers, H. Cancer modeling meets human organoid technology. Science 364, 952–955 (2019).

    Article  CAS  PubMed  Google Scholar 

  10. Clevers, H. & Tuveson, D. A. Organoid models for cancer research. Annu. Rev. Cancer Biol. 3, 223–234 (2019).

    Article  Google Scholar 

  11. Jacob, F. et al. A patient-derived glioblastoma organoid model and biobank recapitulates inter- and intra-tumoral heterogeneity. Cell 180, 188–204.e22 (2020).

    Article  CAS  PubMed  Google Scholar 

  12. Qian, X. et al. Generation of human brain region-specific organoids using a miniaturized spinning bioreactor. Nat. Protoc. 13, 565–580 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Qian, X. et al. Brain-region-specific organoids using mini-bioreactors for modeling ZIKV exposure. Cell 165, 1238–1254 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Han, S. H. et al. Long-term culture-induced phenotypic difference and efficient cryopreservation of small intestinal organoids by treatment timing of Rho kinase inhibitor. World J. Gastroenterol. 23, 964–975 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Li, X., Meng, G., Krawetz, R., Liu, S. & Rancourt, D. E. The ROCK inhibitor Y-27632 enhances the survival rate of human embryonic stem cells following cryopreservation. Stem Cells Dev. 17, 1079–1085 (2008).

    Article  CAS  PubMed  Google Scholar 

  16. Shi, J. & Wei, L. Rho kinase in the regulation of cell death and survival. Arch. Immunol. Ther. Exp. (Warsz) 55, 61–75 (2007).

    Article  CAS  Google Scholar 

  17. Tilson, S. G. et al. ROCK inhibition facilitates in vitro expansion of glioblastoma stem-like cells. PloS One 10, e0132823 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. June, C. H., O’Connor, R. S., Kawalekar, O. U., Ghassemi, S. & Milone, M. C. CAR T cell immunotherapy for human cancer. Science 359, 1361–1365 (2018).

    Article  CAS  PubMed  Google Scholar 

  19. Newick, K., O’Brien, S., Moon, E. & Albelda, S. M. CAR T cell therapy for solid tumors. Annu. Rev. Med. 68, 139–152 (2017).

    Article  CAS  PubMed  Google Scholar 

  20. Goff, S. L. et al. Pilot trial of adoptive transfer of chimeric antigen receptor-transduced T cells targeting EGFRvIII in patients with glioblastoma. J. Immunother. 42, 126–135 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. O’Rourke, D. M. et al. A single dose of peripherally infused EGFRvIII-directed CAR T cells mediates antigen loss and induces adaptive resistance in patients with recurrent glioblastoma. Sci. Transl. Med. 9, eaaa0984 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  22. Johnson, L. A. et al. Rational development and characterization of humanized anti-EGFR variant III chimeric antigen receptor T cells for glioblastoma. Sci. Transl. Med. 7, 275ra222 (2015).

    Article  CAS  Google Scholar 

  23. Schnalzger, T. E. et al. 3D model for CAR-mediated cytotoxicity using patient-derived colorectal cancer organoids. EMBO J. 38, e100928 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. Neftel, C. et al. An integrative model of cellular states, plasticity, and genetics for glioblastoma. Cell 178, 835–849.e21 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Patel, A. P. et al. Single-cell RNA-seq highlights intratumoral heterogeneity in primary glioblastoma. Science 344, 1396–1401 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Kong, W. J. et al. CellTagging: combinatorial indexing to simultaneously map lineage and identity at single-cell resolution. Nat. Protoc. 15, 750–772 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Cattaneo, C. M. et al. Tumor organoid-T-cell coculture systems. Nat. Protoc. 15, 15–39 (2020).

    Article  CAS  PubMed  Google Scholar 

  28. Dijkstra, K. K. et al. Generation of tumor-reactive T cells by co-culture of peripheral blood lymphocytes and tumor organoids. Cell 174, 1586–1598.e12 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Ledur, P. F., Onzi, G. R., Zong, H. & Lenz, G. Culture conditions defining glioblastoma cells behavior: what is the impact for novel discoveries? Oncotarget 8, 69185–69197 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  30. Lee, J. et al. Tumor stem cells derived from glioblastomas cultured in bFGF and EGF more closely mirror the phenotype and genotype of primary tumors than do serum-cultured cell lines. Cancer Cell 9, 391–403 (2006).

    Article  CAS  PubMed  Google Scholar 

  31. Patrizii, M., Bartucci, M., Pine, S. R. & Sabaawy, H. E. Utility of glioblastoma patient-derived orthotopic xenografts in drug discovery and personalized therapy. Front. Oncol. 8, 23 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  32. Qian, X., Nguyen, H. N., Jacob, F., Song, H. & Ming, G. L. Using brain organoids to understand Zika virus-induced microcephaly. Development 144, 952–957 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Bian, S. et al. Genetically engineered cerebral organoids model brain tumor formation. Nat. Methods 15, 631–639 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Ogawa, J., Pao, G. M., Shokhirev, M. N. & Verma, I. M. Glioblastoma model using human cerebral organoids. Cell Rep. 23, 1220–1229 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Hubert, C. G. et al. A three-dimensional organoid culture system derived from human glioblastomas recapitulates the hypoxic gradients and cancer stem cell heterogeneity of tumors found in vivo. Cancer Res. 76, 2465–2477 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Yi, H. G. et al. A bioprinted human-glioblastoma-on-a-chip for the identification of patient-specific responses to chemoradiotherapy. Nat. Biomed. Eng. 3, 509–519 (2019).

    Article  CAS  PubMed  Google Scholar 

  37. Hovinga, K. E. et al. Inhibition of notch signaling in glioblastoma targets cancer stem cells via an endothelial cell intermediate. Stem Cells 28, 1019–1029 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Shimizu, F., Hovinga, K. E., Metzner, M., Soulet, D. & Tabar, V. Organotypic explant culture of glioblastoma multiforme and subsequent single-cell suspension. Curr. Protoc. Stem Cell Biol. Ch. 3, Unit 3.5 (2011).

  39. Merz, F. et al. Organotypic slice cultures of human glioblastoma reveal different susceptibilities to treatments. Neuro Oncol. 15, 670–681 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Parker, J. J., Lizarraga, M., Waziri, A. & Foshay, K. M. A human glioblastoma organotypic slice culture model for study of tumor cell migration and patient-specific effects of anti-invasive drugs. J. Vis. Exp. e53557 (2017).

  41. Herrera-Perez, M., Voytik-Harbin, S. L. & Rickus, J. L. Extracellular matrix properties regulate the migratory response of glioblastoma stem cells in three-dimensional culture. Tissue Eng Part A 21, 2572–2582 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Huang, L. E. Friend or foe—IDH1 mutations in glioma 10 years on. Carcinogenesis 40, 1299–1307 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Abud, E. M. et al. iPSC-derived human microglia-like cells to study neurological diseases. Neuron 94, 278–293.e9 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Cakir, B. et al. Engineering of human brain organoids with a functional vascular-like system. Nat. Methods 16, 1169–1175 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Lin, Y. T. et al. APOE4 causes widespread molecular and cellular alterations associated with Alzheimer’s disease phenotypes in human iPSC-derived brain cell types. Neuron 98, 1141–1154.e7 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Pham, M. T. et al. Generation of human vascularized brain organoids. Neuroreport 29, 588–593 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  47. Porter, D. L., Levinu, B. L., Kalos, M., Bagg, A. & June, C. H. Chimeric antigen receptor-modified T cells in chronic lymphoid leukemia. N. Engl. J. Med. 365, 725–733 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Jonkman, J., Brown, C. M., Wright, G. D., Anderson, K. I. & North, A. J. Tutorial: guidance for quantitative confocal microscopy. Nat. Protoc. 15, 1585–1611 (2020).

    Article  CAS  PubMed  Google Scholar 

  49. Karsy, M., Albert, L., Tobias, M. E., Murali, R. & Jhanwar-Uniyal, M. All-trans retinoic acid modulates cancer stem cells of glioblastoma multiforme in an MAPK-dependent manner. Anticancer Res. 30, 4915–4920 (2010).

    CAS  PubMed  Google Scholar 

  50. Hobro, A. J. & Smith, N. I. An evaluation of fixation methods: spatial and compositional cellular changes observed by Raman imaging. Vib. Spectrosc. 91, 31–45 (2017).

    Article  CAS  Google Scholar 

  51. Drexler, H. G. & Uphoff, C. C. Mycoplasma contamination of cell cultures: incidence, sources, effects, detection, elimination, prevention. Cytotechnology 39, 75–90 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Bhaduri, A. et al. Outer radial glia-like cancer stem cells contribute to heterogeneity of glioblastoma. Cell Stem Cell 26, 48–63.e6 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Wang, R. et al. Adult human glioblastomas harbor radial glia-like cells. Stem Cell Reports 14, 338–350 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Brennan, C. W. et al. The somatic genomic landscape of glioblastoma. Cell 155, 462–477 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank all patients who generously donated tissue. We thank members of the Ming and Song laboratories for comments and suggestions, B. Temsamrit and E. LaNoce for technical support, J. Schnoll for lab coordination, and D. O’Rourke, M. Nasrallah and others in the Departments of Neurosurgery and Pathology at the Hospital of the University of Pennsylvania for assistance with tissue acquisition. This work was supported by the Glioblastoma Translational Center of Excellence at the Abramson Cancer Center at the University of Pennsylvania, grants from the National Institutes of Health (R37NS047344 and R35NS116843 to H.S., R35NS097370 and U19AI131130 to G.-l.M.), the Sheldon G. Adelson Medical Research Foundation (to G.-l.M.) and the Pennsylvania Department of Health (to G.-l.M.).

Author information

Authors and Affiliations

Authors

Contributions

F.J. developed the procedures to generate, culture and biobank GBOs and to co-culture GBOs with CAR T cells and produced the sample data. F.J., G.-l.M. and H.S. conceived the project and wrote the manuscript.

Corresponding authors

Correspondence to Fadi Jacob, Guo-li Ming or Hongjun Song.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature Protocols thanks Lisa Ebert, Henner Farin, Guillermo Gomez, Yanhong Shi and Ali G Turhan for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

Key reference using this protocol

Jacob, F. et al. Cell 180, 188–204.e122 (2020): https://doi.org/10.1016/j.cell.2019.11.036

Key data used in this protocol

Jacob, F. et al. Cell 180, 188–204.e122 (2020): https://doi.org/10.1016/j.cell.2019.11.036

Supplementary information

Supplementary Information

Supplementary Methods

Reporting Summary

Supplementary Video 1

Video showing procedures for processing patient glioblastoma tissue for organoid culture

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jacob, F., Ming, Gl. & Song, H. Generation and biobanking of patient-derived glioblastoma organoids and their application in CAR T cell testing. Nat Protoc 15, 4000–4033 (2020). https://doi.org/10.1038/s41596-020-0402-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41596-020-0402-9

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer