Skip to main content
Log in

Effect of Solid-Solution Second-Phase Particles on the Austenite Grain Growth Behavior in Nb-Ti High-Strength if Steel

  • Published:
Strength of Materials Aims and scope

The effect of the solid solution of second-phase particles on the austenite grain growth behavior at different heating temperatures and holding times of Nb-Ti high-strength IF steel is examined. The experimental results showed that the solid solubility of Nb in austenite increased significantly with temperature, dispersion and fine second-phase particles continued to dissolve in austenite. The pinning effect weakened and the austenite grains increased slowly. When temperature reached 1050 °C, a large number of second-phase particles (NbC, TiC, etc.) gradually dissolved in austenite. The solid solubility of microalloyed elements in austenite used for testing steel was different. To make these elements dissolved completely and, at the same time, obtain fine-grained austenite, heating temperature needs to be kept between 1050–1100°C and the holding time limited to 30–40 min. The austenite grain growth model is constructed based on the experimental data. The calculated values are in agreement with the experimental results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

References

  1. Rajib Saha, R. K. Ray, and D. Bhattacharjee, “Attaining deep drawability and non-earing properties in Ti+Nb interstitial-free steels through double cold rolling and annealing,” Scripta. Mater., 57, No. 3, 257–262 (2007).

    Article  CAS  Google Scholar 

  2. H. Kang, C. I. Garciar, K. Chin, and A. J. Deardo, “Effect of aluminum content on the mechanical properties of dual stabilized Ti–Nb interstitial free high strength steel (IF-HSS),” ISIJ Int., 47, No. 3, 486–493 (2007).

    Article  CAS  Google Scholar 

  3. S. Matsuoka, K. Hasegawa, and Y. Tanaka, “Newly-developed ultra-high tensile strength steels with excellent formability and weldability,” JFE Technical Report, 10, 13–20 (2007).

    Google Scholar 

  4. T. Fujita, T. Urabe, and M. Sakurai, “High-performance, high-strength steel sheets for exposed auto body panels,” JFE Technical Report, 10, 8–12 (2007).

    Google Scholar 

  5. R. Staúko, H. Adrian, and A. Adrian, “Effect of nitrogen and vanadium on austenite grain growth kinetics of a low alloy steel,” Mater. Charact., 56, Nos. 4–5, 340–347 (2006).

    Google Scholar 

  6. Y. L. Zhao, J. Shi, W. Q. Cao, et al.,, “Effect of heating temperature on austenite grain growth of a medium-carbon Nb steel,” Mater. Heat. Treat., 31, No. 4, 67–70 (2010).

    Google Scholar 

  7. S. S. Zhang, M. Q. Li, Y. G. Liu, et al., “The growth behavior of austenite grain in the heating process of 300 MPa steel,” Mater. Sci. Eng. A, 528, No. 15, 4967–4972 (2011).

    Article  CAS  Google Scholar 

  8. Q. Y. Sha and Z. Q. Sun, “Grain growth behavior of coarse-grained austenite in a Nb–V–Ti microalloyed steel,” Mater. Sci. Eng. A, 523, Nos. 1–2, 77–84 (2009).

    Article  Google Scholar 

  9. Q. B. Yu and Y. Sun, “Abnormal growth of austenite grain of low-carbon steel,” Mater. Sci. Eng. A, 420, Nos. 1–2, 34–38 (2006).

    Article  Google Scholar 

  10. M. Maalekian, R. Radis, J. Militzer, et al., “In situ measurement and modelling of austenite grain growth in a Ti/Nb microalloyed steel,” Acta Mater., 60, No. 3, 1015–1026 (2012).

    Article  CAS  Google Scholar 

  11. Q. Y. Sha, G. J. Huang, J. Guan, et al., “A new route for identification of precipitates on austenite grain boundary in an Nb-V-Ti microalloyed steel,” J. Iron Steel Res. Int., 18, No. 8, 53–57 (2011).

    Article  CAS  Google Scholar 

  12. J. Moon, J. B. Lee, and C. H. Lee, “Prediction for the austenite grain size in the presence of growing particles in the weld HAZ of Ti-microalloyed steel,” Mater. Sci. Eng. A, 459, Nos. 1–2, 40–46 (2007).

    Article  Google Scholar 

  13. X. F. Yan, H. T. Zhang, R. Z. Wang, and G. Y. Pang, “Austenite grain coarsening and NbC dissolutionprecipitation behavior in niobium-bearing steel 16Mn,” J. Iron Steel Res. Int., 12, No. 2, 49–53 (2000).

    CAS  Google Scholar 

  14. A. Babakhani, S. M. R. Ziaei, and A. R. Kiani-Rashid, “Investigation on the effects of hot forging parameters on the austenite grain size of vanadium microalloyed forging steel (30MSV6),” J. Alloy. Compd., 490, Nos. 1–2, 572–75 (2010).

    Article  CAS  Google Scholar 

  15. Y. Yang, H. X. Hou, Y. P. Ma, and C. Y. Gu, “Effect of reheating temperature on solid solution of second phase particle and grain growth in steel containing niobium and titanium,” J. Iron Steel Res. Int., 20, No. 7, 38–42 (2008).

    CAS  Google Scholar 

  16. Y. Z. Luo, L. M. Zhang, and C. Xiao, “Evolution of precipitates in Nb-Ti binary low-carbon microalloyed steels,” J. Univ. Sci. Technol. Beijing, 4, No. 7, 775–780 (2012).

    Google Scholar 

  17. B. Dutta and C. M. Sellars, “Effect of composition and process variables on Nb(CN) precipitation niobium microalloyed austenite,” Mater. Sci. Technol., 3, No. 3, 197– 206 (1987).

    Article  CAS  Google Scholar 

  18. K. Inoue, N. Ishikawa, I. Ohnuma, et al., “Calculation of phase equilibria between austenite and (Nb, Ti, V)(C, N) in microalloyed steels,” ISIJ Int., 41, No. 2, 175–182 (2001).

    Article  CAS  Google Scholar 

  19. Q. L. Yong, Y. F. Li, Z. B. Sun, and B. R. Wu, “Second-phase on grain coarsening time and temperature,” Iron & Steel, 9, 45–49 (1993).

    Google Scholar 

  20. F. J. Gil and J. A. Planell, “Behaviour of normal grain growth kinetics in single phase titanium and titanium alloys,” Mater. Sci. Eng. A, 283, Nos. 1–2, 17–24 (2000).

    Article  Google Scholar 

  21. C. Y. Chen, H. W. Yen, F. H. Kao, et al., “Precipitation hardening of high-strength low-alloy steels by nanometer-sized carbides,” Mater. Sci. Eng. A, 499, Nos. 1–2, 162–166 (2009).

    Article  Google Scholar 

  22. O. Kwon and A. J. DeArdo, “Interactions between recrystallization and precipitation in hot deformed microalloyed steel,” Acta Metall. Mater., 39, No. 4, 529–538 (1991).

    Article  CAS  Google Scholar 

  23. J. Gajendra, D. Sourav, S. Subhasis, et al., “Design and development of precipitate strengthened advanced high strength steel for automotive application,” Mater. Sci. Eng. A, 561, 394–402 (2013).

    Article  Google Scholar 

  24. I. Weiss and J. J. Jonas, “Interactions between recrystallization and precipitation during high temperature deformation of HSLA steels,” Metall. Trans. A, 10, 831–840 (1979).

    Article  Google Scholar 

  25. W. M. Rainforth, M. P. Black, R. L. Higginson, et al., “Precipitation of NbC in a model austenitic steel,” Acta Mater., 50, No. 4, 735–740 (2002).

    Article  CAS  Google Scholar 

  26. P. A. Manohar, D. P. Dunne, T. Chandra, and C. R. Killmore, “Grain growth predictions in microalloyed steels,” ISIJ Int., 36, No. 2, 194–200 (1996).

    Article  CAS  Google Scholar 

  27. C. Zener, “Theory of growth of spherical precipitates from solid solution,” Trans. Met. Soc. AIME, 175, No. 15, 47–56 (1948).

    Google Scholar 

  28. S. Uhm, J. Moon, C. Lee, et al., “Prediction model for the austenite grain size in the coarse grained heat affected zone of Fe-C-Mn steels: Considering the effect of initial grain size on isothermal growth behavior,” ISIJ Int., 44, No. 7, 1230–1237 (2004).

    Article  CAS  Google Scholar 

  29. E. T. Turkdogan, Physical Chemistry of High Temperature Technology, Academic Press, New York (1980).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. M. Zhang.

Additional information

Translated from Problemy Prochnosti, No. 4, pp. 50 – 59, July – August, 2020.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, H.M., Chen, R., Jia, H.B. et al. Effect of Solid-Solution Second-Phase Particles on the Austenite Grain Growth Behavior in Nb-Ti High-Strength if Steel. Strength Mater 52, 539–547 (2020). https://doi.org/10.1007/s11223-020-00205-7

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11223-020-00205-7

Keywords

Navigation