Skip to main content
Log in

Texture Evolution of Modified 12%Cr Steel in High-Temperature Compression

  • Published:
Strength of Materials Aims and scope

The texture evolution of modified 12%Cr steel in high-temperature compression was investigated under a 10, 25, 35, and 50% reduction at 1150°C by using Gleeble-1500 D thermal simulation machine. Electron backscattering diffraction analysis showed that the texture of modified 12%Cr steel varied within α, γ, and ε and Goss fibers coexisting to γ and ε , then to α and ε , with the {hkl} <111> orientation always existing in compression. Recrystallization nuclei contribute to γ-fiber strengthening due to their high-energy mechanism. First activated. α-fibers can be consolidated owing to the interaction of deformation and recrystallization. In the compression procedure of an ultrasupercritical high-pressure rotor made of modified 12%Cr steel, the deformation should be controlled under the recrystallization activation energy of α-fibers to obtain the microstructure featured by the γ-fiber recrystallization texture, and vice versa.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

References

  1. X. H. Liu and J. T. Lin, “Technical progress of material for heavy forgings of steam turbines rotors at home and abroad (1),” Metals Heat Treatment Abroad, 3, 5–7 (1999).

    Google Scholar 

  2. S. D. Yadav, M. El-Tahawy, S. Kalácska, et al., “Characterizing dislocation configurations and their evolution during creep of a new 12% Cr steel,” Mater. Charact., 134, 387–397 (2017).

    Article  CAS  Google Scholar 

  3. Z. Wang, J. Xu, Y. Takeda, et al., “An electrochemical method for detection and quantification of Laves phase in 12Cr martensitic stainless steel,” Corros. Sci., 135, 215–221 (2018).

    Article  CAS  Google Scholar 

  4. T. C. Lin, H. Wang, C. J. Wang, et al., “Research status of 12%Cr HP-IP supercritical rotor steel,” Foundry Tech., 33, 1267–1269 (2012).

    CAS  Google Scholar 

  5. M. M. El Rayes and E. A. El-Danaf, “High temperature deformation behavior of as-produced and retired 9–12%Cr power plant steel,” Mater. Sci. Eng. A, 697, 203–210 (2017).

    Article  Google Scholar 

  6. G. Seidametova, J.-B. Vogt, I. P. Serre, “The early stage of fatigue crack initiation in a 12%Cr martensitic steel,” Int. J. Fatigue, 106, 38–48 (2018).

    Article  CAS  Google Scholar 

  7. J. L. Yan, H. Ding, H. Huang, et al., “In-situ investigation of tensile deformation and fracture mechanism of 12Cr1MoV steel after long-term service,” Mater. Sci. Eng. A, 700, 33–41 (2017).

    Article  CAS  Google Scholar 

  8. S.-L. Zhang and F.-Z. Xuan, “Interaction of cyclic softening and stress relaxation of 9–12%Cr steel under strain-controlled fatigue-creep condition: Experimental and modeling,” Int. J. Plasticity, 98, 45–64 (2017).

    Article  CAS  Google Scholar 

  9. H. Wang , W. Yan, S. van Zwaag, et al., “On the 650°C thermostability of 9–12Cr heat resistant steels containing different precipitates,” Acta Mater., 134, 143–154 (2017).

    Article  CAS  Google Scholar 

  10. Z. X. Liu, Basic Research and Process Simulation of Heat Treatment for 12%Cr Ultra-Supercritical Rotor Steel, Master Thesis, Taiyuan University of Sciences & Technology, Taiyuan (2012).

  11. F. L. Sun, Experimental and Simulation Study on Microstructure Evolution of 12%Cr Ultra-Supercritical Rotor Steel during forging Process, Master Thesis, Taiyuan University of Sciences & Technology, Taiyuan (2011).

  12. X. Liang, Theoretical and Experimental Study on Hot Forging Crack of 12%Cr Steel, Master Thesis, Taiyuan University of Sciences & Technology, Taiyuan (2011).

  13. H. Bhadeshia and R. Honeycombe, Steels: Microstructure and Properties, Elsevier Ltd., Oxford (2006).

    Google Scholar 

  14. G. Krauss, Steels: Processing, Structure, and Performance, ASM International (2005).

  15. E. I. Galindo-Nava and P. E. J. Rivera-Díaz-del-Castillo, “A model for the microstructure behaviour and strength evolution in lath martensite,” Acta Mater., 98, 81–93 (2015).

    Article  CAS  Google Scholar 

  16. S. Morito, X. Huang, T. Furuhara, et al., “The morphology and crystallography of lath martensite in alloy steels,” Acta Mater., 54, 5323–5331 (2006).

    Article  CAS  Google Scholar 

  17. V. Randle and O. Engler, Introduction to Texture Analysis: Macrotexture, Microtexture and Orientation Mapping, Gordon & Breach, Amsterdam (2000).

  18. B. Radhakrishnan and G. B. Sarma, “Coupled simulations of texture evolution during deformation and recrystallization of fcc and bcc metals,” Mater. Sci. Eng. A, 494, 73–79 (2008).

    Article  Google Scholar 

  19. S.-H. Choi and Y.-S. Jin, “Evaluation of stored energy in cold-rolled steels from EBSD data,” Mater. Sci. Eng. A, 371, 149–159 (2004).

    Article  Google Scholar 

  20. T. Sakai, T. Yoneme, K. Yoneda, and Y. Saito, “Shear texture control in low carbon steel sheet by differential speed rolling,” Mater. Sci. Forum, 426–432, 3569–3574 (2003).

    Article  Google Scholar 

  21. T. Nguyen-Minh, J. J. Sidor, R. H. Petrov, and L. A. I. Kestens, “Shear banding and its contribution to texture evolution in rotated Goss orientation of bcc structured materials,” IOP Conf Ser.: Mater. Sci. Eng., 82 (2015), https://doi.org/10.1088/1757-899X/82/1/012023.

  22. F. J. Humphreys and M. Hatherly, Recrystallization and Related Annealing Phenomena, Elsevier, New York (1995), pp. 335–337.

    Google Scholar 

  23. M. R. Barnett and L. Kestens, “Formation of {111} <110> and {111} <112> textures in cold rolled and annealed IF sheet steel,” ISIJ Int., 39, 923–929 (1999).

    Article  CAS  Google Scholar 

  24. N. Yoshinaga, D. Vanderschueren, L. Kestens, et al., “Cold-rolling and recrystallization texture formation in electro-deposited pure iron with a sharp and homogeneous γ-fiber,” ISIJ Int., 38, 610–616 (1998).

    Article  CAS  Google Scholar 

  25. L. S. Tóth, Y. Estrin, R. Lapovok, and C. Gu, “A model of grain fragmentation based on lattice curvature,” Acta Mater., 58, 1782–1794 (2010).

    Article  Google Scholar 

  26. B. Radhakrishnan and G. Sarma, “The effect of coarse non-deformable particles on the deformation and static recrystallization of aluminium alloys,” Philos. Mag., 84, 2341–2366 (2004).

    Article  Google Scholar 

  27. B. Radhakrishnan and G. Sarma, “Simulating the deformation and recrystallization of aluminum bicrystals,” JOM, 56, 55–62 (2004).

    Article  CAS  Google Scholar 

  28. P. Yang, P. Gao, and Z. Sun, “Local deformation inhomogeneities in compressed low carbon steels,” Mater. Sci. Tech. [in Chinese], 13, 657 (2005).

  29. M. Humbert, B. Petit, B. Bolle, and N. Gey, “Analysis of the γ–ε–α′ variant selection induced by 10% plastic deformation in 304 stainless steel at –60°C,” Mater. Sci. Eng. A, 454–455, 508–517 (2007).

    Article  Google Scholar 

  30. M. R. Daymond, R. A. Holt, S. Cai, et al., “Texture inheritance and variant selection through an hcp–bcc–hcp phase transformation,” Acta Mater., 58, 4053–4066 (2010).

    Article  CAS  Google Scholar 

  31. S. H. Lee, J. Y. Kang, H. N. Han, et al., “Variant selection in mechanically-induced martensitic transformation of metastable austenitic steel,” ISIJ Int., 45, 1217–1219 (2005).

    Article  CAS  Google Scholar 

  32. E. P. Kwon, S. Fujieda, K. Shinoda, and S. Suzuki, “Martensitic transformation and texture in novel bcc Fe-Mn-Al-Ni-Cr alloys,” Procedia Engineer., 10, 2214–2219 (2011).

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The paper was financially supported by the China Scholarship Council Fund (grant No. 201608140160). We also thank Professor Zhengyi Jiang of the University of Wollongong, Australia, for the supervising the manuscript preparation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to X. Z. Zhang.

Additional information

Translated from Problemy Prochnosti, No. 4, pp. 60 – 69, July – August, 2020.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, X.Z., Li, Y.J. Texture Evolution of Modified 12%Cr Steel in High-Temperature Compression. Strength Mater 52, 548–555 (2020). https://doi.org/10.1007/s11223-020-00206-6

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11223-020-00206-6

Keywords

Navigation