Skip to main content
Log in

B36 bowl-like structure as nanocarrier for sulfonamides: a theoretical study

  • Original Paper
  • Published:
Monatshefte für Chemie - Chemical Monthly Aims and scope Submit manuscript

Abstract

Density functional theory method used to investigate the interaction of the simplest sulfonamide with the B36 nanocluster. The obtained results indicate that although sulfonamide weakly interacts with convex and concave sides of the nanocluster, the B atom at the edge of B36 nanocluster is favorable position for adsorbing. The interactions have been also studied in terms of natural bond order charges analysis. The electronic properties of the nanocluster are significantly altered once the sulfonamide molecule is adsorbed. Thus, the energy gap between HOMO and LUMO orbitals is reduced which could be applied as a chemical signal. Moreover, the relative high dipole moments obtained for B36/sulfonamide configurations suggest that these structures could be solubilized or dispersed in polar mediums like water. According to the results obtained, the B36 nanostructure could be a potential carrier for delivering sulfonamides in nanomedicine applications.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. De Jong WH, Borm PJ (2008) Int J Nanomed 3:133

    Article  Google Scholar 

  2. Ciofani G, Mattoli V (2016) Boron nitride nanotubes in nanomedicine. William Andrew, Norwich

    Google Scholar 

  3. Wong SS, Joselevich E, Woolley AT, Cheung CL, Lieber CM (1998) Nature 394:52

    Article  CAS  PubMed  Google Scholar 

  4. Chen X, Kis A, Zettl A, Bertozzi CR (2007) Proc Natl Acad Sci 104:8218

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Zare K, Shadmani N, Pournamdari E (2013) J Nanostruct Chem 3:75

    Article  Google Scholar 

  6. Farmanzadeh D, Ghazanfary S (2014) Struct Chem 25:293

    Article  CAS  Google Scholar 

  7. Bashiri S, Vessally E, Bekhradnia A, Hosseinian A, Edjlali L (2017) Vacuum 136:156

    Article  CAS  Google Scholar 

  8. Novoselov KS, Geim AK, Morozov SV, Jiang D, Zhang Y, Dubonos SV, Grigorieva IV, Firsov AA (2004) Science 306:666

    Article  CAS  PubMed  Google Scholar 

  9. Iijima S (1991) Nature 354:56

    CAS  Google Scholar 

  10. Boustani I, Quandt A (1997) Europhys Lett 39:527

    Article  CAS  Google Scholar 

  11. Cao L, Zhang Z, Sun L, Gao C, He M, Wang Y, Li Y, Zhang X, Li G, Zhang J (2001) Adv Mater 13:1701

    Article  CAS  Google Scholar 

  12. Amsler M, Botti S, Marques MA, Goedecker S (2013) Phys Rev Lett 111:136101

    Article  PubMed  CAS  Google Scholar 

  13. Pauling L (1960) The nature of the chemical bond, vol 260. Cornell University Press, Ithaca

    Google Scholar 

  14. Janotti A, Van de Walle CG (2007) Nat Mater 6:44

    Article  CAS  PubMed  Google Scholar 

  15. Li X, Grubisic A, Stokes ST, Cordes J, Ganteför G, Bowen KH, Kiran B, Willis M, Jena P, Burgert R (2007) Science 315:356

    Article  CAS  PubMed  Google Scholar 

  16. Piazza ZA, Hu H-S, Li W-L, Zhao Y-F, Li J, Wang L-S (2014) Nat Commun 5:3113

    Article  PubMed  CAS  Google Scholar 

  17. Kootenaei AS, Ansari G (2016) Phys Lett A 380:2664

    Article  CAS  Google Scholar 

  18. Liu C-S, Wang X, Ye X-J, Yan X, Zeng Z (2014) J Chem Phys 141:194306

    Article  PubMed  CAS  Google Scholar 

  19. Solimannejad M, Kamalinahad S, Shakerzadeh E (2017) J Electron Mater 46:4420

    Article  CAS  Google Scholar 

  20. Shakerzadeh E (2017) J Mol Liq 240:682

    Article  CAS  Google Scholar 

  21. Rastgou A, Soleymanabadi H, Bodaghi A (2017) Microelectron Eng 169:9

    Article  CAS  Google Scholar 

  22. Rostami Z, Soleymanabadi H (2016) J Mol Model 22:70

    Article  PubMed  CAS  Google Scholar 

  23. Baron S (1996) Protozoa: structure, classification, growth, and development—medical microbiology. University of Texas Medical Branch at Galveston, Galveston

    Google Scholar 

  24. VanMeter KC, Hubert RJ (2015) Microbiology for the healthcare professional-e-book. Elsevier Health Sciences, Amsterdam

    Google Scholar 

  25. Kołaczek A, Fusiarz I, Ławecka J, Branowska D (2014) Chemik 68:620

    Google Scholar 

  26. Tačić A, Nikolić V, Nikolić L, Savić I (2017) Adv Technol 6:58

    Article  Google Scholar 

  27. Zoumpoulakis P, Camoutsis C, Pairas G, Soković M, Glamočlija J, Potamitis C, Pitsas A (2012) Bioorg Med Chem 20:1569

    Article  CAS  PubMed  Google Scholar 

  28. Ezabadi IR, Camoutsis C, Zoumpoulakis P, Geronikaki A, Soković M, Glamočilija J, Ćirić A (2008) Bioorg Med Chem 16:1150

    Article  CAS  PubMed  Google Scholar 

  29. Supuran CT, Briganti F, Tilli S, Chegwidden WR, Scozzafava A (2001) Bioorg Med Chem 9:703

    Article  CAS  PubMed  Google Scholar 

  30. Supuran CT, Scozzafava A, Casini A (2003) Med Res Rev 23:146

    Article  CAS  PubMed  Google Scholar 

  31. Remko M, Garaj V (2003) Mol Phys 101:2357

    Article  CAS  Google Scholar 

  32. Shoaib Ahmad Shah S, Rivera G, Ashfaq M (2013) Minirev Med Chem 13:70

    Article  Google Scholar 

  33. Farag AA, Abd-Alrahman SN, Ahmed GF, Ammar RM, Ammar YA, Abbas SY (2012) Arch Pharm 345:703

    Article  CAS  Google Scholar 

  34. Tang X, Huang L, Qi C, Wu X, Wu W, Jiang H (2013) Chem Commun 49:6102

    Article  CAS  Google Scholar 

  35. Supuran CT, Casini A, Scozzafava A (2003) Med Res Rev 23:535

    Article  CAS  PubMed  Google Scholar 

  36. Rendell M (2004) Drugs 64:1339

    Article  CAS  PubMed  Google Scholar 

  37. Scozzafava A, Mastrolorenzo A, Supuran C (2002) Curr Cancer Drug Targets 2:55

    Article  PubMed  Google Scholar 

  38. Fukuoka K, Usuda J, Iwamoto Y, Fukumoto H, Nakamura T, Yoneda T, Narita N, Saijo N, Nishio K (2001) Investig New Drugs 19:219

    Article  CAS  Google Scholar 

  39. Chen Q, Wei G-F, Tian W-J, Bai H, Liu Z-P, Zhai H-J, Li S-D (2014) Phys Chem Chem Phys 16:18282

    Article  CAS  PubMed  Google Scholar 

  40. Nicholas JB, Vance R, Martin E, Burke BJ, Hopfinger A (1991) J Phys Chem 95:9803

    Article  CAS  Google Scholar 

  41. Remko M (2003) J Phys Chem A 107:720

    Article  CAS  Google Scholar 

  42. Yu H, Cho H-H, Cho C-H, Kim K-H, Kim DY, Kim BJ, Oh JH (2013) ACS Appl Mater Interfaces 5:4865

    Article  CAS  PubMed  Google Scholar 

  43. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JA Jr, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam MJ, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas Ö, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2009) Gaussian 09. Gaussian Inc, Wallingford

    Google Scholar 

  44. Zhao Y, Truhlar DG (2008) Acc Chem Res 41:157

    Article  CAS  PubMed  Google Scholar 

  45. Zhao Y, Truhlar DG (2007) J Am Chem Soc 129:8440

    Article  CAS  PubMed  Google Scholar 

  46. Yang K, Peverati R, Truhlar DG, Valero R (2011) J Chem Phys 135:044118

    Article  PubMed  CAS  Google Scholar 

  47. Rad AS, Kashani OR (2015) Appl Surf Sci 355:233

    Article  CAS  Google Scholar 

  48. Rad AS (2015) Synth Met 209:419

    Article  CAS  Google Scholar 

  49. Rad AS, Abedini E (2016) Appl Surf Sci 360:1041

    Article  CAS  Google Scholar 

  50. Cossi M, Barone V, Mennucci B, Tomasi J (1998) Chem Phys Lett 286:253

    Article  CAS  Google Scholar 

  51. Barone V, Cossi M, Tomasi J (1998) J Comput Chem 19:404

    Article  CAS  Google Scholar 

  52. Reed AE, Weinstock RB, Weinhold F (1985) J Chem Phys 83:735

    Article  CAS  Google Scholar 

  53. Geerlings P, De Proft F, Langenaeker W (2003) Chem Rev 103:1793

    Article  CAS  PubMed  Google Scholar 

  54. O’boyle NM, Tenderholt AL, Langner KM (2008) J Comput Chem 29:839

    Article  PubMed  CAS  Google Scholar 

  55. Johnson ER, Keinan S, Mori-Sanchez P, Contreras-Garcia J, Cohen AJ, Yang W (2010) J Am Chem Soc 132:6498

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Lu T, Chen F (2012) J Comput Chem 33:580

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Saeedeh Kamalinahad.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kamalinahad, S., Soltanabadi, A. & Gamallo, P. B36 bowl-like structure as nanocarrier for sulfonamides: a theoretical study. Monatsh Chem 151, 1785–1796 (2020). https://doi.org/10.1007/s00706-020-02705-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00706-020-02705-3

Keywords

Navigation