Skip to main content
Log in

Magnesiothermic Reduction of TiO2 Assisted by LaCl3

  • Research Article
  • Published:
Journal of Sustainable Metallurgy Aims and scope Submit manuscript

Abstract

Titanium (Ti) is produced by a multi-step process from Ti ore composed of Ti oxide including chlorination process. However, the smelting cost is a major factor that leads to an increase in the cost of Ti. To lower the cost of Ti, the development of a new technique for the direct production of metallic Ti from an oxide feed material is highly desired. However, owing to the high affinity between Ti and oxygen (O) and the high solubility of O in Ti, it is extremely difficult to produce metallic Ti with low O concentration which meets the level required by the industry. In this study, we developed a new method for producing Ti with a low O concentration directly from TiO2 by using Mg as a reductant, assisted by a rare earth oxychloride formation reaction. The production of Ti with a low O concentration was demonstrated using a magnesiothermic reduction of TiO2 in MgCl2–LaCl3 molten salt via a reduction reaction involving LaOCl formation: (TiO2 (s) + 2 Mg (l) + 2 LaCl3 (l) = Ti (s) + 2 MgCl2 (l) + 2 LaOCl (s)). An electrochemical method that produces metallic Ti from TiO2 with no consumption of rare earth elements and Mg was designed based on the experiment results. This process is expected to replace the current smelting processes of Ti as well as numerous other rare metals produced from raw oxide materials and contribute significantly to a decrease in the price of rare metals.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Okabe TH (2019) Metallothermic reduction of TiO2. In: Fang ZZ, Froes FH, Zhang Y (eds) Extractive metallurgy of titanium, 1st edn, pp 131–164

  2. Okabe TH, Takeda O (2019) Fundamentals of thermochemical reduction of TiCl4. In: Fang ZZ, Froes FH, Zhang Y (eds) Extractive metallurgy of titanium, 1st edn, pp 65–96

  3. Takeda O, Ouchi T, Okabe TH (2020) Recent progress in titanium extraction and recycling. Metall Mater Trans B 51:1315–1328

    CAS  Google Scholar 

  4. Okabe TH, Zheng C, Taninouchi Y (2018) Thermodynamic considerations of direct oxygen removal from titanium by utilizing the deoxidation capability of rare earth metals. Metall Mater Trans B 49:1056–1066

    CAS  Google Scholar 

  5. Zheng C, Ouchi T, Iizuka A, Taninouchi Y, Okabe TH (2019) Deoxidation of titanium using Mg as deoxidant in MgCl2-YCl3 flux. Metall Mater Trans B 50:622–631

    CAS  Google Scholar 

  6. Perkin FM, Pratt L (1907) Reducing action of metallic calcium and calcium hydride upon metallic oxides, sulphides, and halogen salts. Trans Faraday Soc 3:179–186

    Google Scholar 

  7. Hasegawa M (1950) Production of crude titanium. J Jpn Inst Met A 14:23–26 (in Japanese)

    Google Scholar 

  8. Sibert ME, Steinberg MA (1956) Electrolytic titanium. J Met 8:1162–1168

    CAS  Google Scholar 

  9. Henrie TA (1968) Extractive metallurgy of titanium. High Temp Refract Metals 34:139–154

    Google Scholar 

  10. Oki T, Inoue H (1967) Reduction of titanium dioxide by calcium in hot cathode spot. Mem Fac Eng Nagoya Univ 19:164–166

    CAS  Google Scholar 

  11. Hayes FH, Bomberger HB, Froes FH, Kaufman L, Burte HM (1984) Advances in titanium extraction metallurgy. JOM 36:70–76

    CAS  Google Scholar 

  12. Ono K, Miyazaki S (1985) Study on the limit of deoxidation of titanium and the reduction of titanium dioxide by saturated calcium vapors. J Jpn Inst Met 49:871–875

    CAS  Google Scholar 

  13. Ono K, Ogawa M, Okabe TH, Suzuki RO (1990) Production of titanium powders by the calciothermic reduction of TiO2. Tetsu-to-Hagane 76:568–575

    CAS  Google Scholar 

  14. Okabe TH (1993) A fundamental study on refining of titanium and its aluminides. PhD thesis, Kyoto University, pp 1–209

  15. Okabe TH, Oda T, Mitsuda Y (2004) Titanium powder production by preform reduction process (PRP). J Alloys Compd 364:156–163

    CAS  Google Scholar 

  16. Okabe TH, Waseda Y (1997) Producing titanium through an electronically mediated reaction. JOM 49:28–32

    CAS  Google Scholar 

  17. Abiko T, Park I, Okabe TH (2003) Reduction of titanium oxide in molten salt medium. 10th World Conference on Titanium, Humburg

  18. Park I, Abiko T, Okabe TH (2005) Production of titanium powder directly from TiO2 in CaCl2 through an electronically mediated reaction (EMR). J Phys Chem Solids 66:410–413

    CAS  Google Scholar 

  19. Chen GZ, Fray DJ, Farthing TW (2000) Direct electrochemical reduction of titanium dioxide to titanium in molten calcium chloride. Nature 407:361–364

    CAS  Google Scholar 

  20. Fray DJ (2001) Emerging molten salt technologies for metals production. JOM 53:26–31

    CAS  Google Scholar 

  21. Chen GZ, Fray DJ, Farthing TW (2004) Removal of oxygen from metal oxides and solid solutions by electrolysis in a fused salt. United States Patent 20040159559A1

  22. Ono K, Suzuki RO (2002) A new concept for producing Ti sponge: calciothermic reduction. JOM 54:59–61

    CAS  Google Scholar 

  23. Suzuki RO, Inoue S (2003) Calciothermic reduction of titanium oxide in molten CaCl2. Metall Mater Trans B 34:277–285

    Google Scholar 

  24. Suzuki RO, Ono K, Teranuma K (2003) Calciothermic reduction of titanium oxide and in-situ electrolysis in molten CaCl2. Metall Mater Trans B 34:287–295

    Google Scholar 

  25. Suzuki RO, Fukui S (2004) Reduction of TiO2 in molten CaCl2 by Ca deposited during CaO electrolysis. Mater Trans 45:1665–1671

    CAS  Google Scholar 

  26. Suzuki RO (2005) Calciothermic reduction of TiO2 and in-situ electrolysis of CaO in molten CaCl2. J Phys Chem Solids 66:461–465

    CAS  Google Scholar 

  27. Fang ZZ, Middlemas S, Guo J, Fan P (2013) A new, energy-efficient chemical pathway for extracting Ti metal from Ti minerals. J Am Chem Soc 135:18248–18251

    CAS  Google Scholar 

  28. Zhang Y, Fang ZZ, Sun P, Zhang T, Xia Y, Zhou C, Huang Z (2016) Thermodynamic destabilization of Ti-O solid solution by H2 and deoxygenation of Ti using Mg. J Am Chem Soc 138:6916–6919

    CAS  Google Scholar 

  29. Zhang Y, Fang ZZ, Xia Y, Huang Z, Lefler H, Zhang T, Sun P, Free ML, Guo J (2016) A novel chemical pathway for energy efficient production of Ti metal from upgraded titanium slag. Chem Eng J 286:517–527

    CAS  Google Scholar 

  30. Zhang Y, Fang ZZ, Xia Y, Sun P, Devener BV, Free M, Lefler H, Zheng S (2017) Hydrogen assisted magnesiothermic reduction of TiO2. Chem Eng J 308:299–310

    CAS  Google Scholar 

  31. Zhang Y, Fang ZZ, Sun P, Xia Y, Free M, Huang Z, Lefler H, Zhang T, Guo J (2017) Kinetically enhanced metallothermic redox of TiO2 by Mg in molten salt. Chem Eng J 327:169–182

    CAS  Google Scholar 

  32. Xia Y, Fang ZZ, Zhang Y, Leer H, Zhang T, Sun P, Huang Z (2017) Hydrogen assisted magnesiothermic reduction (HAMR) of commercial TiO2 to produce titanium powder with controlled morphology and particle size. Mater Trans 58:355–360

    CAS  Google Scholar 

  33. Lefler H, Fang ZZ, Zhang Y, Sun P, Xia Y (2018) Mechanisms of hydrogen-assisted magnesiothermic reduction of TiO2. Metall Mater Trans B 49:2998–3006

    CAS  Google Scholar 

  34. Li Q, Zhu X, Zhang Y, Fang ZZ, Zheng S, Sun P, Xia Y, Li P, Zhang Y, Zou X (2019) An investigation of the reduction of TiO2 by Mg in H2 atmosphere. Chem Eng Sci 195:484–493

    CAS  Google Scholar 

  35. Nersisyan HH, Lee JH, Won CW (2003) Combustion of TiO2–Mg and TiO2–Mg–C systems in the presence of NaCl to synthesize nanocrystalline Ti and TiC powders. Mater Res Bull 38:1135–1146

    CAS  Google Scholar 

  36. Eshed M, Irzh A, Gedanken A (2009) Reduction of titanium dioxide to metallic titanium conducted under the autogenic pressure of the reactants. Inorg Chem 48:7066–7069

    CAS  Google Scholar 

  37. Bolivar R, Friedrich B (2019) Magnesiothermic reduction from titanium dioxide to produce titanium powder. J Sustain Metall 5:219–229

    Google Scholar 

  38. Won CW, Nersisyan HH, Won HI (2010) Titanium powder prepared by a rapid exothermic reaction. Chem Eng J 157:270–275

    CAS  Google Scholar 

  39. Ouchi K, Kobayashi Y, Endo R, Susa M (2013) Promotion of solid TiO2 reduction by molten magnesium from the perspective of reaction mechanisms. Tetsu-to-Hagane 99:433–438 (in Japanese)

    CAS  Google Scholar 

  40. Nersisyan HH, Won HI, Won CW, Jo A, Kim JH (2014) Direct magnesiothermic reduction of titanium dioxide to titanium powder through combustion synthesis. Chem Eng J 235:67–74

    CAS  Google Scholar 

  41. Okabe TH, Taninouchi Y, Zheng C (2018) Thermodynamic analysis of deoxidation of titanium through the formation of rare-earth oxyfluorides. Metall Mater Trans B 49:3107–3117

    CAS  Google Scholar 

  42. Zheng C, Ouchi T, Kong L, Taninouchi Y, Okabe TH (2019) Electrochemical deoxidation of titanium in Molten MgCl2-YCl3. Metall Mater Trans B 50:1652–1661

    CAS  Google Scholar 

  43. Kong L, Ouchi T, Okabe TH (2019) Direct deoxidation of Ti by Mg in MgCl2-HoCl3 flux. Mater Trans (JIM) 60:2059–2068

    CAS  Google Scholar 

  44. Kong L, Ouchi T, Zheng C, Okabe TH (2019) Electrochemical deoxidation of titanium scrap in MgCl2-HoCl3 system. J Electrochem Soc 166:E429–E437

    CAS  Google Scholar 

  45. Iizuka A, Ouchi T, Okabe TH (2020) Ultimate deoxidation method of titanium utilizing Y/YOCl/YCl3 equilibrium. Metall Mater Trans B 51:433–442

    CAS  Google Scholar 

  46. Iizuka A, Ouchi T, Okabe TH (2020) Development of a new titanium powder sintering process with deoxidation reaction using yttrium metal. Mater Trans 61:758–765

    CAS  Google Scholar 

  47. Tanaka T, Ouchi T, Okabe TH (2020) Lanthanothermic reduction of TiO2. Metall Mater Trans B 51:1485–1494. https://doi.org/10.1007/s11663-020-01860-6

    Article  CAS  Google Scholar 

  48. Tanaka T, Ouchi T, Okabe TH (2020) Yttriothermic reduction of TiO2 in molten salts. Mater Trans 61:1967–1973

  49. Kong L, Ouchi T, Okabe TH (2020) Deoxidation of Ti using Ho in HoCl3 flux and determination of thermodynamic data of HoOCl. J Alloy Compd. https://doi.org/10.1016/j.jallcom.2020.156047

    Article  Google Scholar 

  50. Arum-shuppan (2019) The rare metal news. no. 2838, 5

  51. Gupta CK, Krishnamurthy N (2013) Oxide reduction processes in the preparation of rare-earth metals. Mining Metall Explor 30:38–44

    CAS  Google Scholar 

  52. Muthmann W, Weiss L (1904) Untersuchungen über die metalle der cergruppe. Justus Liebigs Ann Chem 331:1–46

    CAS  Google Scholar 

  53. Muthmann W, Weiss L (1907) Untersuchungen über metallisches vanadin, niob, tantal. Justus Liebigs Ann Chem 351:59–99

    Google Scholar 

  54. Vogel R (1917) About the influence of the titanium on the perlite creation in carbon steel. Ferrum 14:177–197

    CAS  Google Scholar 

  55. Okabe TH, Suzuki RO, Oishi T, Ono K (1991) Thermodynamic properties of dilute titanium-oxygen solid solution in beta phase. Mater Trans (JIM) 32:485–488

    CAS  Google Scholar 

  56. Barin I (1995) Thermochemical data of pure substance, 3rd edn. Wiley-VCH, Weinheim

    Google Scholar 

  57. Chase MW (1998) NIST-JANAF Thermochemical Tables, 4th edn., American Institute of Physics

  58. Permyakov PG, Korshunov BG, Krokhin VA (1975) Solubility of rare earth and yttrium oxochlorides in molten salts: MCl2 (M: Mg, Ca, Sr, Ba). Zhurnal Neorganicheskoj Khimii 20:2184–2187

    CAS  Google Scholar 

  59. Drobot DV, Korshunov BG, Durinina LV (1965) Equilibrium of reaction of lanthanum and praseodymium chlorides with oxygen. Izv. Akad. Nauk SSSR. Neorg Mater 1:2189–2196

    CAS  Google Scholar 

  60. Okabe TH, Suzuki RO, Oishi T, Ono K (1991) Production of extra low oxygen titanium by calcium-halide flux deoxidation. Tetsu-to-Hagane 77:93–99 (in Japanese)

    CAS  Google Scholar 

  61. Okabe TH, Oishi T, Ono K (1992) Preparation and characterization of extra-low-oxygen titanium. J Alloys Compd 184:43–56

    CAS  Google Scholar 

  62. Okabe TH, Nakamura M, Ueki T, Oishi T, Ono K (1992) Preparation of extra-low-oxygen titanium by the calcium-halide flux deoxidation process. Materia Japan 31:315–317 (in Japanese)

    Google Scholar 

Download references

Acknowledgements

The authors are grateful to Mr. Akihiro Iizuka and Dr. Lingxin Kong at The University of Tokyo for their effective comments. This work was financially supported by the Japan Society for the Promotion of Science (JSPS) through a Grant-in-Aid for Scientific Research (S) (KAKENHI Grant No. 26220910 and 19H05623).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Takanari Ouchi.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

The contributing editor for this article was Hongmin Zhu.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tanaka, T., Ouchi, T. & Okabe, T.H. Magnesiothermic Reduction of TiO2 Assisted by LaCl3. J. Sustain. Metall. 6, 667–679 (2020). https://doi.org/10.1007/s40831-020-00296-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40831-020-00296-1

Keywords

Navigation