Skip to main content
Log in

Development of PGE-Bearing Silicate Glass Standards for Quantitative Trace Element Analysis in Silicate-Based Metallurgical Slags

  • Research Article
  • Published:
Journal of Sustainable Metallurgy Aims and scope Submit manuscript

Abstract

Two batches of silicate glass doped with precious metals (PMs) (Pt, Rh, Pd, Os, Ir, Ru, Au, and Re) were prepared as analytical reference materials at very high oxygen potentials, which can be achieved only at elevated pressure. The high oxygen potentials allow the PMs to dissolve in the glasses as oxide components. The two glasses were examined and characterized using electron probe X-ray microanalyzer (EPMA) and laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) for their chemical composition and homogeneity. The glasses were found to be homogeneous on the micron scale or less to within analytical precision, and are well suited as standards for the rapid and accurate LA-ICP-MS analysis of PMs in silicate slags or similar materials.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Jackson SE, Longerich HP, Dunning GR, Freyer BJ (1992) The application of laser-ablation microprobe; inductively coupled plasma-mass spectrometry (LAM-ICP-MS) to in situ trace-element determinations in minerals. Can Mineral 30(4):1049–1064

    CAS  Google Scholar 

  2. Ertel W, O’Neill HSC, Sylvester P, Dingwell D (1999) Solubilities of Pt and Rh in a haplobasaltic silicate melt at 1300°C. Geochim Cosmochim Acta 63(16):2439–2449

    Article  CAS  Google Scholar 

  3. Avarmaa K, O’Brien H, Johto H, Taskinen P (2015) Equilibrium distribution of precious metals between slag and copper matte at 1250–1350°C. J Sustain Metall 1(3):216–228

    Article  Google Scholar 

  4. Klemettinen L, Taskinen P, O’Brien H, Jokilaakso A (2019) Equilibrium studies: experimental techniques and characterization methods at Aalto University, Finland. Paper presented at the international multidisciplinary geosciences conference, University of Mitrovica, Republic of Kosovo, 10/10/2019

  5. Hidayat T, Chen J, Hayes PC, Jak E (2019) Distributions of Ag, Bi, and Sb as minor elements between iron-silicate slag and copper in equilibrium with tridymite in the Cu-Fe-O-Si system at T= 1250°C and 1300°C (1523 K and 1573 K). Metall Mater Trans B 50(1):229–241

    Article  CAS  Google Scholar 

  6. Godel B, Barnes S-J, Maier WD (2007) Platinum-group elements in sulphide minerals, platinum-group minerals, and whole-rocks of the Merensky Reef (Bushveld Complex, South Africa): implications for the formation of the reef. J Petrol 48(8):1569–1604

    Article  CAS  Google Scholar 

  7. Danyushevsky L, Robinson P, Gilbert S, Norman M, Large R, McGoldrick P, Shelley M (2011) Routine quantitative multi-element analysis of sulphide minerals by laser ablation ICP-MS: standard development and consideration of matrix effects. Geochem Explor Environ Anal 11(1):51–60

    Article  CAS  Google Scholar 

  8. Ding L, Yang G, Xia F, Lenehan CE, Qian G, McFadden A, Brugger J, Zhang X, Chen G, Pring A (2011) A LA-ICP-MS sulphide calibration standard based on a chalcogenide glass. Mineral Mag 75(2):279–287

    Article  CAS  Google Scholar 

  9. Sylvester PJ (2001) Laser-ablation-ICPMS in the earth sciences: principles and applications, vol 29. Mineralogical association of Canada, Ottawa, Ontario, Canada

    Google Scholar 

  10. Jochum KP, Willbold M, Raczek I, Stoll B, Herwig K (2005) Chemical characterisation of the USGS reference glasses GSA-1G, GSC-1G, GSD-1G, GSE-1G, BCR-2G, BHVO-2G and BIR-1G using EPMA, ID-TIMS, ID-ICP-MS and LA-ICP-MS. Geostand Geoanal Res 29(3):285–302

    Article  CAS  Google Scholar 

  11. Guillong M, Hametner K, Reusser E, Wilson SA, Günther D (2005) Preliminary characterisation of new glass reference materials (GSA-1G, GSC-1G, GSD-1G and GSE-1G) by laser ablation-inductively coupled plasma-mass spectrometry using 193 nm, 213 nm and 266 nm wavelengths. Geostand Geoanal Res 29(3):315–331

    Article  CAS  Google Scholar 

  12. Fonseca RO, Mallmann G, O’Neill HSC, Campbell IH, Laurenz V (2011) Solubility of Os and Ir in sulfide melt: implications for Re/Os fractionation during mantle melting. Earth Planet Sci Lett 311(3–4):339–350

    Article  CAS  Google Scholar 

  13. Borisov A, Palme H (1995) The solubility of iridium in silicate melts: new data from experiments with Ir10Pt90 alloys. Geochim Cosmochim Acta 59(3):481–485

    Article  CAS  Google Scholar 

  14. Cottrell E, Walker D (2006) Constraints on core formation from Pt partitioning in mafic silicate liquids at high temperatures. Geochim Cosmochim Acta 70(6):1565–1580

    Article  CAS  Google Scholar 

  15. Fortenfant S, Dingwell D, Ertel-Ingrisch W, Capmas F, Birck J, Dalpe C (2006) Oxygen fugacity dependence of Os solubility in haplobasaltic melt. Geochim Cosmochim Acta 70(3):742–756

    Article  CAS  Google Scholar 

  16. Mann U, Frost DJ, Rubie DC, Becker H, Audétat A (2012) Partitioning of Ru, Rh, Pd, Re, Ir and Pt between liquid metal and silicate at high pressures and high temperatures—implications for the origin of highly siderophile element concentrations in the Earth’s mantle. Geochim Cosmochim Acta 84:593–613

    Article  CAS  Google Scholar 

  17. Brenan JM, Bennett NR, Zajacz Z (2016) Experimental results on fractionation of the highly siderophile elements (HSE) at variable pressures and temperatures during planetary and magmatic differentiation. Rev Mineral Geochem 81(1):1–87

    Article  Google Scholar 

  18. Boyd F, England J (1960) Apparatus for phase-equilibrium measurements at pressures up to 50 kilobars and temperatures up to 1750° C. J Geophys Res 65(2):741–748

    Article  CAS  Google Scholar 

  19. Belonoshko A, Saxena S (1991) A molecular dynamics study of the pressure-volume-temperature properties of supercritical fluids: II. CO2, CH4, CO, O2, and H2. Geochim Cosmochim Acta 55(11):3191–3208

    Article  CAS  Google Scholar 

  20. Ziebold TO (1967) Precision and sensitivity in electron microprobe analysis. Anal Chem 39(8):858–861

    Article  CAS  Google Scholar 

  21. Donovan JJ, Lowers HA, Rusk BG (2011) Improved electron probe microanalysis of trace elements in quartz. Am Mineral 96(2–3):274–282

    Article  CAS  Google Scholar 

  22. Reed S, Buckley A (1996) Virtual WDS. In: Benoit D, Bresse J-F, Van’t dack L, Werner H, Wernisch J (eds) Microbeam and nanobeam analysis. Springer, pp 479–483

  23. Park J-W (2012) Platinum-group elements geochemistry of felsic rocks. Australian National University

  24. Burnham AD, O’Neill HSC (2020) Mineral–melt partition coefficients and the problem of multiple substitution mechanisms: insights from the rare earths in forsterite and protoenstatite. Contrib Miner Petrol 175(1):7

    Article  CAS  Google Scholar 

  25. Jenner FE, O’Neill HSC (2012) Major and trace analysis of basaltic glasses by laser‐ablation ICP‐MS. Geochem Geophys Geosyst. https://doi.org/10.1029/2011GC003890

    Article  Google Scholar 

  26. Jochum KP, Weis U, Stoll B, Kuzmin D, Yang Q, Raczek I, Jacob DE, Stracke A, Birbaum K, Frick DA (2011) Determination of reference values for NIST SRM 610–617 glasses following ISO guidelines. Geostand Geoanal Res 35(4):397–429

    Article  CAS  Google Scholar 

  27. Borisov A, Palme H (1997) Experimental determination of the solubility of platinum in silicate melts. Geochim Cosmochim Acta 61(20):4349–4357

    Article  CAS  Google Scholar 

  28. Sylvester PJ, Eggins SM (1997) Analysis of Re, Au, Pd, Pt and Rh in NIST glass certified reference materials and natural basalt glasses by laser ablation ICP-MS. Geostand Newsl 21(2):215–229

    Article  CAS  Google Scholar 

  29. Hu Z, Liu Y, Li M, Gao S, Zhao L (2009) Results for rarely determined elements in MPI-DING, USGS and NIST SRM glasses using laser ablation ICP-MS. Geostand Geoanal Res 33(3):319–335

    Article  CAS  Google Scholar 

  30. Wang Z, Becker H (2014) Abundances of sulfur, selenium, tellurium, rhenium and platinum-group elements in eighteen reference materials by isotope dilution sector-field ICP-MS and negative TIMS. Geostand Geoanal Res 38(2):189–209

    CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the facilities of Microscopy Australia at the Advanced Imaging Precinct, Australian National University, a facility that is funded by the University, and State and Federal Governments. The authors would like to thank technical assistance and valuable advice from David Clark, Dean Scott, and Michael Anenburg from RSES, ANU.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiang Chen.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

The contributing editor for this article was Sharif Jahanshahi.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, J., Mallmann, G., Zhukova, I. et al. Development of PGE-Bearing Silicate Glass Standards for Quantitative Trace Element Analysis in Silicate-Based Metallurgical Slags. J. Sustain. Metall. 6, 691–699 (2020). https://doi.org/10.1007/s40831-020-00308-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40831-020-00308-0

Keywords

Navigation