Skip to main content
Log in

Multi-class classification method for steel surface defects with feature noise

  • Original Paper
  • Published:
Journal of Iron and Steel Research International Aims and scope Submit manuscript

Abstract

Defect classification is the key task of a steel surface defect detection system. The current defect classification algorithms have not taken the feature noise into consideration. In order to reduce the adverse impact of feature noise, an anti-noise multi-class classification method was proposed for steel surface defects. On the one hand, a novel anti-noise support vector hyper-spheres (ASVHs) classifier was formulated. For N types of defects, the ASVHs classifier built N hyper-spheres. These hyper-spheres were insensitive to feature and label noise. On the other hand, in order to reduce the costs of online time and storage space, the defect samples were pruned by support vector data description with parameter iteration adjustment strategy. In the end, the ASVHs classifier was built with sparse defect samples set and auxiliary information. Experimental results show that the novel multi-class classification method has high efficiency and accuracy for corrupted defect samples in steel surface.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. E. Amid, S.R. Aghdam, H. Amindavar, Int. J. Electr. Comput. Eng. 6 (2012) 693–697.

    Google Scholar 

  2. F. Dupont, C. Odet, M. Cartont, NDT&E Int. 30 (1997) 3–10.

    Article  Google Scholar 

  3. M. Xiao, M.M. Jiang, G.Y. Li, L. Xie, L. Yi, EURASIP J. Image Vide. Process. 2017 (2017) 48.

    Article  Google Scholar 

  4. S.Y. Tian, K. Xu, Metals 7 (2017) 311.

    Article  Google Scholar 

  5. F.G. Bulnes, D.F. García, F. Javier De la Calle, R. Usamentiaga, J. Molleda, J. Nondestruct. Eval. 35 (2016) 54.

    Article  Google Scholar 

  6. L. Yi, G.Y. Li, M.M. Jiang, Steel Res. Int. 88 (2017) 176–187.

    Article  Google Scholar 

  7. S.Y. Zhou, Y.P. Chen, D.L. Zhang, J.M. Xie, Y.F. Zhou, Mater. Tehnol. 51 (2017) 123–131.

    Google Scholar 

  8. H.J. Hu, Y.X. Li, M.F. Liu, W.H. Liang, Multimed. Tools Appl. 69 (2014) 199–216.

    Article  Google Scholar 

  9. D.Y. Cui, K.W. Xia, Math. Probl. Eng. 2017 (2017) 4257273.

    Google Scholar 

  10. M.X. Chu, R.F. Gong, A.N. Wang, ISIJ Int. 54 (2014)119–124.

    Article  Google Scholar 

  11. M.X. Chu, X.P. Liu, R.F. Gong, L.M. Liu, Chemometr. Intell. Lab. Syst. 176 (2018) 108–118.

    Article  Google Scholar 

  12. P.Y. Hao, J.H. Chiang, Y.H. Lin, Appl. Intell. 30 (2009) 98–111.

    Article  Google Scholar 

  13. X.J. Peng, D. Xu, Neural Comput. Appl. 24 (2014) 1207–1220.

    Article  Google Scholar 

  14. X.J. Peng, D. Xu, Inform. Sci. 221 (2013) 12–27.

    Article  MathSciNet  Google Scholar 

  15. Y.T. Xu, IEEE Trans. Cybern. 47 (2017) 1540–1550.

    Article  Google Scholar 

  16. X.L. Huang, L. Shi, J.A.K. Suykens, IEEE Trans. Pattern Anal. Mach. Intell. 36 (2014) 984–997.

    Article  Google Scholar 

  17. D.M.J. Tax, R.P.W. Duin, Mach. Learn. 54 (2004) 45–66.

    Article  Google Scholar 

  18. M.X. Chu, A.N. Wang, R.F. Gong, M. Sha, ISIJ Int. 54 (2014) 1638–1645.

    Article  Google Scholar 

  19. R.F. Gong, M.X. Chu, A.N. Wang, Y.H. Yang, ISIJ Int. 55 (2015) 207–212.

    Article  Google Scholar 

  20. C.H. Lin, J.S. Tsai, C.T. Chiu, IEEE Trans. Image Process. 19 (2010) 2307–2320.

    Article  MathSciNet  Google Scholar 

  21. Z.Y. He, L.N. Sun, Appl. Opt. 54 (2015) 9823–9830.

    Article  Google Scholar 

  22. M.H.J. Vala, A. Baxi, Int. J. Adv. Res. Comput. Eng. Technol. 2 (2013) 387–389.

  23. H.J. Hu, Y. Liu, M.F. Liu, L.Q. Nie, Neurocomputer 181 (2016) 86–95.

    Article  Google Scholar 

  24. M.X. Chu, R.F. Gong, S. Gao, J. Zhao, Chemometr. Intell. Lab. Syst. 171 (2017) 140–150.

    Article  Google Scholar 

  25. C. Cortes, V. Vapnik, Mach. Learn. 20 (1995) 273–297.

    Google Scholar 

  26. R .Jayadeva, R. Khemchandani, S. Chandra, IEEE Trans. Pattern Anal. Mach. Intell. 29 (2007) 905–910.

    Article  Google Scholar 

  27. B. Fei, J. Liu, IEEE Trans. Neural Netw. 17 (2006) 696–704.

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the reviewers for the helpful comments and suggestions. This work was supported by the National Natural Science Foundation of China (No. 51674140), Natural Science Foundation of Liaoning Province, China (No. 20180550067), Department of Education of Liaoning Province, China (Nos. 2017LNQN11 and 2020LNZD06), University of Science and Technology Liaoning Talent Project Grants (No. 601011507-20) and University of Science and Technology Liaoning Team Building Grants (No. 601013360-17).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yong-hui Yang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chu, Mx., Feng, Y., Yang, Yh. et al. Multi-class classification method for steel surface defects with feature noise. J. Iron Steel Res. Int. 28, 303–315 (2021). https://doi.org/10.1007/s42243-020-00501-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42243-020-00501-1

Keywords

Navigation