Skip to main content
Log in

Precipitation strengthening of nano-scale TiC in a duplex low-density steel under near-rapid solidification

  • Original Paper
  • Published:
Journal of Iron and Steel Research International Aims and scope Submit manuscript

Abstract

Precipitation strengthening of nano-scale TiC is a promising method to improve mechanical properties of Fe–16Mn–9Al–0.8C (wt.%) low-density steel. This work attempted to introduce nano-scale TiC precipitates by adding 1 wt.% Ti element. The experimental results show that these precipitates with the total fraction of about 2 vol.% were formed and no coarse precipitates were observed despite the high Ti addition. It was interesting that the polygonal and needle-shaped TiC precipitates were observed in γ-austenite and δ-ferrite, respectively. Ti addition also decreased the volume fraction of γ-austenite significantly. Correspondingly, the yield strength was increased, but the elongation was significantly decreased due to the significant decrease of γ-austenite. Comparing with the Ti-free steel, the formation of TiC precipitates was the main reason for the increase in yield strength of Ti-bearing steel, and TiC precipitates also led to a higher strain hardening index at the first deformation stage. TiC precipitates promoted the Orowan strengthening, resulting in a higher strain hardening capability than Ti-free steel reinforced by shearable κ-carbide.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. S. Chen, R. Rana, A. Haldar, R.K. Ray, Prog. Mater. Sci. 89 (2017) 345–391.

    Article  Google Scholar 

  2. R. Rana, Canad. Metall. Quart. 53 (2014) 241–242.

    Article  Google Scholar 

  3. J. Xing, Y. Wei, L. Hou, JOM 70 (2018) 929–937.

    Article  Google Scholar 

  4. Z.Q. Wu, H. Ding, X.H. An, D. Han, X.Z. Liao, Mater. Sci. Eng. A 639 (2015) 187–191.

    Article  Google Scholar 

  5. Y. Sutou, N. Kamiya, R. Umino, I. Ohnuma, K. Ishida, ISIJ Int. 50 (2010) 893–899.

    Article  Google Scholar 

  6. G. Frommeyer, U. Brüx, Steel Res. Int. 77 (2006) 627–633.

    Article  Google Scholar 

  7. C. Haase, C. Zehnder, T. Ingendahl, A. Bikar, F. Tang, B. Hallstedt, W. Hu, W. Bleck, D.A. Molodov, Acta Mater. 122 (2017) 332–343.

    Article  Google Scholar 

  8. D. Liu, M. Cai, H. Ding, D. Han, Mater. Sci. Eng. A 715 (2018) 25–32.

    Article  Google Scholar 

  9. C.W. Kim, M. Terner, J.H. Lee, H.U. Hong, J. Moon, S.J. Park, J.H. Jang, C.H. Lee, B.H. Lee, Y.J. Lee, J. Alloy. Compd. 775 (2019) 554–564.

    Article  Google Scholar 

  10. M.J. Yao, E. Welsch, D. Ponge, S.M.H. Haghighat, S. Sandlöbes, P. Choi, M. Herbig, I. Bleskov, T. Hickel, M. Lipinska-Chwalek, P. Shanthraj, C. Scheu, S. Zaefferer, B. Gault, D. Raabe, Acta Mater. 140 (2017) 258–273.

    Article  Google Scholar 

  11. J.B. Seol, D. Raabe, P. Choi, H.S. Park, J.H. Kwak, C.G. Park, Scripta Mater. 68 (2013) 348–353.

    Article  Google Scholar 

  12. W.W. Song, W. Zhang, J.V. Appen, R. Dronskowski, W. Bleck, Steel Res. Int. 86 (2015) 1161–1169.

    Article  Google Scholar 

  13. K. Choi, C.H. Seo, H. Lee, S.K. Kim, J.H. Kwak, K.G. Chin, K.T. Park, N.J. Kim, Scripta Mater. 63 (2010) 1028–1031.

    Article  Google Scholar 

  14. C.L. Lin, C.G. Chao, J.Y. Juang, J.M. Yang, T.F. Liu, J. Alloy. Compd. 586 (2014) 616–620.

    Article  Google Scholar 

  15. J.B. Seol, S.H. Na, B. Gault, J.E. Kim, J.C. Han, C.G. Park, D. Raabe, Sci. Rep. 7 (2017) 42547.

    Article  Google Scholar 

  16. H.J. Kong, C.T. Liu, Technologies 6 (2018) 36.

    Article  Google Scholar 

  17. H. Halfa, J. Miner. Mater. Charact. Eng. 2 (2014) 428–469.

    Google Scholar 

  18. D. Raabe, D. Ponge, O. Dmitrieva, B. Sander, Scripta Mater. 60 (2009) 1141–1144.

    Article  Google Scholar 

  19. R. Prava Dalai, S. Das, K. Das, Canad. Metall. Quart. 53 (2014) 317–325.

  20. A.K. Srivastava, K. Das, J. Mater. Eng. Perform. 21 (2012) 2438–2445.

    Article  Google Scholar 

  21. Y. Chen, H.M. Wang, Mater. Lett. 57 (2003) 1233–1238.

    Article  Google Scholar 

  22. W. He, B.L. Wang, Y. Yang, Y.H. Zhang, L. Duan, Z.P. Luo, C.J. Song, Q.J. Zhai, J. Iron Steel Res. Int. 25 (2018) 830–838.

    Article  Google Scholar 

  23. Y. Yang, J.L. Zhang, C.H. Hu, Z.P. Luo, Y.H. Zhang, C.J. Song, Q.J. Zhai, Mater. Sci. Eng. A 748 (2019) 74–84.

    Article  Google Scholar 

  24. J.L. Zhang, C.H. Hu, Y.H. Zhang, J.H. Li, C.J. Song, Q.J. Zhai, Mater. Des. 186 (2020) 108307.

    Article  Google Scholar 

  25. W. Cao, S.L. Chen, F. Zhang, K. Wu, Y. Yang, Y.A. Chang, R. Schmid-Fetzer, W.A. Oates, Calphad 33 (2009) 328–342.

    Article  Google Scholar 

  26. A. Etienne, V. Massardier-Jourdan, S. Cazottes, X. Garat, M. Soler, I. Zuazo, X. Kleber, Metall. Mater. Trans. A 45 (2014) 324–334.

    Article  Google Scholar 

  27. M.C. Ha, J.M. Koo, J.K. Lee, S.W. Hwang, K.T. Park, Mater. Sci. Eng. A 586 (2013) 276–283.

    Article  Google Scholar 

  28. R.G. Baligidad, V.V.S. Prasad, A.S. Rao, Mater. Sci. Technol. 23 (2007) 613–619.

    Article  Google Scholar 

  29. J. Kang, Y.J. Li, X.H. Wang, H.S. Wang, G. Yuan, R.D.K. Misra, G.D. Wang, Mater. Sci. Eng. A 742 (2019) 464–477.

    Article  Google Scholar 

  30. N.P. Zhou, R.B. Song, F.Q. Yang, X. Li, J.J. Li, JOM 71 (2019) 4105–4113.

    Article  Google Scholar 

  31. H.W. Yen, C.Y. Chen, T.Y. Wang, C.Y. Huang, J.R. Yang, Mater. Sci. Technol. 26 (2010) 421–430.

    Article  Google Scholar 

  32. S. Kobayashi, A. Schneider, S. Zaefferer, G. Frommeyer, D. Raabe, Acta Mater. 53 (2005) 3961–3970.

    Article  Google Scholar 

  33. Z.D. Liu, J. Tian, B. Li, L.P. Zhao, Mater. Sci. Eng. A 527 (2010) 3898–3903.

    Article  Google Scholar 

  34. Z.S. Liu, H. Fredriksson, Metall. Mater. Trans. A 28 (1997) 471–483.

    Article  Google Scholar 

  35. S.H. Choo, S. Lee, S.J. Kwon, Metall. Mater. Trans. A 30 (1999) 3131–3141.

    Article  Google Scholar 

  36. F.G. Wei, T. Hara, K. Tsuzaki, Philos. Mag. 84 (2004) 1735–1751.

    Article  Google Scholar 

  37. A.E. Karantzalis, A. Lekatou, E. Georgatis, Z. Arni, V. Dracopoulos, Mater. Charact. 62 (2011) 1196–1204.

    Article  Google Scholar 

  38. S.K. Mishra, S.K. Das, A.K. Ray, P. Ramchandrarao, J. Mater. Res. 14 (1999) 3594–3598.

    Article  Google Scholar 

  39. D.A. Porter, K.E. Easterling, M. Sherif, Phase transformations in metals and alloys (Revised Reprint), CRC Press, Boca Raton, USA, 2009.

    Book  Google Scholar 

  40. Z.G. Yang, M. Enomoto, Mater. Sci. Eng. A 332 (2002) 184–192.

    Article  Google Scholar 

  41. R. Labusch, Acta Metall. 20 (1972) 917–927.

    Article  Google Scholar 

  42. C. Varvenne, G.P.M. Leyson, M. Ghazisaeidi, W.A. Curtin, Acta Mater. 124 (2017) 660–683.

    Article  Google Scholar 

  43. C. Scott, B. Remy, J.L. Collet, A. Cael, C. Bao, F. Danoix, B. Malard, C. Curfs, Int. J. Mater. Res. 102 (2011) 538–549.

    Article  Google Scholar 

  44. H.W. Yen, P.Y. Chen, C.Y. Huang, J.R. Yang, Acta Mater. 59 (2011) 6264–6274.

    Article  Google Scholar 

  45. H.W. Yen, C.Y. Huang, J.R. Yang, Scripta Mater. 61 (2009) 616–619.

    Article  Google Scholar 

  46. J. Herrmann, G. Inden, G. Sauthoff, Acta Mater. 51 (2003) 3233–3242.

    Article  Google Scholar 

  47. C.J. Altstetter, A.P. Bentley, J.W. Fourie, A.N. Kirkbride, Mater. Sci. Eng. 82 (1986) 13–25.

    Article  Google Scholar 

  48. L.F. Zhang, R.B. Song, C. Zhao, F.Q Yang, Mater. Sci. Eng. A 640 (2015) 225–234.

    Article  Google Scholar 

  49. Y. Kobayashi, J. Takahashi, K. Kawakami, Scripta Mater. 67 (2012) 854–857.

    Article  Google Scholar 

  50. J.W. Martin, Precipitation hardening, Butterworth-Heinemann, Oxford, UK, 1998.

    Google Scholar 

  51. N. Kamikawa, Y. Abe, G. Miyamoto, Y. Funakawa, T. Furuhara, ISIJ Int. 54 (2014) 212–221.

    Article  Google Scholar 

Download references

Acknowledgements

Jian-lei Zhang was grateful for his visiting Ph.D project supported by the China Scholarship Council (Grant No. 201906890053). This work was financially supported by the National Natural Science Foundation of China (No. 51974184), National MCF Energy R&D Program of China (No. 2018YFE0306102) and Independent Research Project of State Key Laboratory of Advanced Special Steel and Shanghai Key Laboratory of Advanced Ferrometallurgy, Shanghai University. The authors would like to express sincere thanks for the staff support at the Instrumental Analysis & Research Center and the Center for Advanced Solidification Technology at Shanghai University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chang-jiang Song.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Jl., Hu, Ch., Liu, Yx. et al. Precipitation strengthening of nano-scale TiC in a duplex low-density steel under near-rapid solidification. J. Iron Steel Res. Int. 28, 1141–1148 (2021). https://doi.org/10.1007/s42243-020-00511-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42243-020-00511-z

Keywords

Navigation