Skip to main content
Log in

Simultaneous Determination of Human Erythrocyte Deformability and Adhesion Energy: A Novel Approach Using a Microfluidic Chamber and the “Glass Effect”

  • Original Paper
  • Published:
Cell Biochemistry and Biophysics Aims and scope Submit manuscript

Abstract

The simultaneous determination of adhesion and deformability parameters of erythrocytes was carried out through a microfluidic device, which uses an inverted optical microscope with new image acquisition and analysis technologies. Also, an update of the models describing erythrocyte adhesion and deformation was proposed. Measurements were carried out with red blood cells suspended in saline solution with human serum albumin at different concentrations. Erythrocytes adhered to a glass surface were subjected to different low shear stress (from 0.04 to 0.25 Pa), causing cellular deformation and dissociation. The maximum value obtained of the erythrocyte deformability index was 0.3, and that of the adhesion energy per unit area was 1.1 × 10−6 Pa m, both according to previous works. The obtained images of RBCs adhered to glass reveal that the adhesion is stronger in a single point of the cell, suggesting a ligand migration that concentrates the adhesion in a “spike-like tip” in the cell. Moreover, adhesion energy results indicate that the energy required to separate erythrocytes in media with a lower albumin concentration is greater. Both results could be explained by the mobility of membrane receptors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Mohandas, N., & Gallagher, P. G. (2008). Red cell membrane: past, present, and future. Blood, 112(10), 3939–3948. https://doi.org/10.1182/blood-2008-07-161166.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Evans, E. A., & Skalak, R. (2018). Mechanics and thermodynamics of biomembranes. Boca Raton: CRC Press (pp. 1–254). ISBN 9781351074339.

  3. Riquelme, B. D., Valverde, J., & Rasia, R. J. (1998). Complex viscoelasticity of normal and lectin treated erythrocytes using laser diffractometry. Biorheology, 35(4-5), 325–334. https://doi.org/10.1016/S0006-355X(99)80014-6.

    Article  CAS  PubMed  Google Scholar 

  4. Castellini, H. V., & Riquelme, B. D. (2018). Study of non-linear viscoelastic behavior of the human red blood cell. Quantitative Biology. https://arxiv.org/abs/1810.07760.

  5. Sans-Sabrafen, J., Besses Raebel, C., & Vives Corrons, J. L. (2006). Hematología clínica. Quinta Ed. Madrid: Elsevier. ISBN 9788481747799.

  6. Meiselman, H., Neu, B., Rampling, M., & Baskurt, O. (2007). RBC aggregation: laboratory data and models. Indian Journal of Experimental Biology, 45(1), 9–17.

    CAS  PubMed  Google Scholar 

  7. Lebensohn, N., Re, A., Carrera, L., Barberena, L., D´Arrigo, M., & Foresto, P. (2009). Ácido siálico sérico, carga aniónica y agregación eritrocitaria en pacientes diabéticos e hipertensos. Medicina, 69(3), 331–334.

    CAS  PubMed  Google Scholar 

  8. Skalak, R., Zarda, P. R., Jan, K. M., & Chien, S. (1981). Mechanics of rouleau formation. Biophysical Journal, 35(3), 771–781. https://doi.org/10.1016/s0006-3495(81)84826-6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Waugh, R. E., & Hochmuth, R. M. (2014). Mechanics and deformability of hematocytes. In Peterson, D. R., Bronzino, J. D. (Eds), Biomechanics: principles and practices. Boca Raton: CRC Press (pp. 14-1–14-14). ISBN 9780429110832.

  10. Renoux, C., Faivre, M., Bessaa, A., Da Costa, L., Joly, P., & Gauthier, A., et al. (2019). Impact of surface-area-to-volume ratio, internal viscosity and membrane viscoelasticity on red blood cell deformability measured in isotonic condition. Scientific Reports, 9(1), 1–7. https://doi.org/10.1038/s41598-019-43200-y.

    Article  CAS  Google Scholar 

  11. Gratzer, W. B. (1981). The red cell membrane and its cytoskeleton. The Biochemical Journal, 198(1), 1–8. https://doi.org/10.1042/bj1980001.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Rasia, R. J. (1995). Quantitative evaluation of erythrocyte viscoelastic properties from diffractometric data: applications to Hereditary spherocytosis and hemoglobinopathies. Clinical Hemorheology and Microcirculation, 15(2), 177–189. https://doi.org/10.3233/CH-1995-15205.

    Article  Google Scholar 

  13. Kaliviotis, E., Ivanov, I., Antonova, N., & Yianneskis, M. (2010). Erythrocyte aggregation at non-steady flow conditions: a comparison of characteristics measured with electrorheology and image analysis. Clinical Hemorheology and Microcirculation, 44(1), 43–54. https://doi.org/10.3233/CH-2009-1251.

    Article  PubMed  Google Scholar 

  14. D’Arrigo, M., Riquelme, B. D., Valverde, J., & Foresto, P. (2009). Análisis de la energía de adhesión intercambiada en la unión CD44-hialuronato. e-Universitas UNR Journal, 1(2), 305–312.

    Google Scholar 

  15. Toderi, M. A., Castellini, H. V., & Riquelme, B. D. (2017). Descriptive parameters of the erythrocyte aggregation phenomenon using a laser transmission optical chip. Journal of Biomedical Optics, 22(1), 17003. https://doi.org/10.1117/1.JBO.22.1.017003.

    Article  PubMed  Google Scholar 

  16. Toderi, M. A., Riquelme, B. D., & Galizzi, G. E. (2020). An experimental approach to study the red blood cell dynamics in a capillary tube by biospeckle laser. Optics and Lasers in Engineering, 127, 105943. https://doi.org/10.1016/j.optlaseng.2019.105943.

    Article  Google Scholar 

  17. Baskurt, O. K., Hardeman, M. R., Rampling, M. W., & Meiselman, H. J. (2007). Handbook of hemorheology and hemodynamics. 1st ed. Amsterdam: IOS Press. ISBN 9781607502630.

    Google Scholar 

  18. Riquelme, B. D., & Londero, C. M. (2018). New optical approach to simultaneous determination of deformability and adhesion energy of human erythrocytes. Optics InfoBase Conference Papers, Part F123-LAOP 2018. https://doi.org/10.1364/LAOP.2018.Th4A.39.

  19. Alapan, Y., Little, J. A., & Gurkan, U. A. (2014). Heterogeneous red blood cell adhesion and deformability in sickle cell disease. Scientific Reports, 4, 7173. https://doi.org/10.1038/srep07173.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Eriksson, L. E. (1990). On the shape of human red blood cells interacting with flat artificial surfaces—the “glass effect”. Biochimica et Biophysica Acta, 1036(3), 193–201. https://doi.org/10.1016/0304-4165(90)90034-t.

    Article  CAS  PubMed  Google Scholar 

  21. Skalak, R. (1973). Modelling the mechanical behavior of red blood cells. Biorheology, 10(2), 229–238. https://doi.org/10.3233/BIR-1973-10215.

    Article  CAS  PubMed  Google Scholar 

  22. Evans, E. A. (2018). Mechanics of cell deformation and cell-surface adhesion. In Bongrand, P. (Ed.), Physical basis of cell-cell adhesion. (pp. 91–124). Boca Raton: CRC Press. eBook ISBN 9781351075572.

  23. Bennett, S. J., Devries, K. L., & Williams, M. L. (1974). Adhesive fracture mechanics. International Journal of Fracture, 10, 33–43. https://doi.org/10.1007/BF00955077.

    Article  Google Scholar 

  24. Skalak, R., & Chien, S. (1983). Theoretical models of rouleau formation and disaggregation. Annals of the New York Academy of Sciences, 416(1), 138–148. https://doi.org/10.1111/j.1749-6632.1983.tb35184.x.

    Article  CAS  PubMed  Google Scholar 

  25. Skalak, R., & Zhu, C. (1990). Rheological aspects of red blood cell aggregation. Biorheology, 27(3–4), 309–325. https://doi.org/10.3233/BIR-1990-273-409.

    Article  CAS  PubMed  Google Scholar 

  26. Sung, L. A., Kabat, E. A., & Chien, S. (1985). Interaction energies in lectin-induced erythrocyte aggregation. Journal of Cell Biology, 101(2), 652–659. https://doi.org/10.1083/jcb.101.2.652.

    Article  CAS  Google Scholar 

  27. Londero, C. M., D’Arrigo, M., & Riquelme, B. D. (2016). Optimización del medio de suspensión para la observación de glóbulos rojos humanos frescos con microscopios ópticos. Acta Microscópica, 25(3), 151–156.

    Google Scholar 

  28. Ponder, E. H. (1971). Hemolysis and related phenomena. 2nd Ed. New York: Grune & Stratton. ISBN 9780808906728.

  29. Wong, P. (2005). A hypothesis of the disc-sphere transformation of the erythrocytes between glass surfaces and of related observations. Journal of Theoretical Biology, 233(1), 127–135. https://doi.org/10.1016/j.jtbi.2004.09.013.

    Article  PubMed  Google Scholar 

  30. Danieli, V., D’Arrigo, M., & Riquelme, B. D. (2009). Deformability of adhered cells study by means of digital microscopic images. Acta Microscópica, 18(3), 261–268.

    CAS  Google Scholar 

  31. Hochmuth, R. M., Mohandas, N., & Blackshear, Jr., P. L. (1973). Measurement of the elastic modulus for red cell membrane, using a fluid mechanical technique. Biophysical Journal, 13, 747–762. https://doi.org/10.1016/S0006-3495(73)86021-7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. DiMilla, P. A., Barbee, K., & Lauffenburger, D. A. (1991). Mathematical model for the effects of adhesion and mechanics on cell migration speed. Biophysical Journal, 60(1), 15–37. https://doi.org/10.1016/S0006-3495(91)82027-6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Rubinson, K. A., & Baker, P. F. (1979). The flow properties of axoplasm in a defined chemical environment: influence of anions and calcium. Proceedings of the Royal Society B: Biological Sciences, 205(1160), 323–345. https://doi.org/10.1098/rspb.1979.0068.

    Article  CAS  Google Scholar 

  34. Amaiden, M. R., Monesterolo, N. E., Santander, V. S., Campetelli, A. N., Arce, C. A., Pie, J., Hope, S. I., Vatta, M. S., & Casale, C. H. (2012). Involvement of membrane tubulin in erythrocyte deformability and blood pressure. Journal of Hypertension, 30(7), 1414–1422. https://doi.org/10.1097/HJH.0b013e328353b19a.

    Article  CAS  PubMed  Google Scholar 

  35. Sackmann, E., & Smith, A. S. (2014). Physics of cell adhesion: some lessons from cell-mimetic systems. Soft Matter, 10(11), 1644–1659. https://doi.org/10.1039/c3sm51910d.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Dr. Mabel D’Arrigo for performing the blood draws and Dr. Analía I. Alet and the staff from the English Department of the Facultad de Ciencias Bioquímicas y Farmacéuticas (UNR) for the language correction of the manuscript. C.M.L. would also like to thank the “Nuevo Banco de Santa Fe” for the Technological Innovation Scholarship received to carry out a previous optimization and validation of the microfluidic chamber used in this work.

Funding

This study was funded by the National University of Rosario.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bibiana D. Riquelme.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Londero, C.M., Riquelme, B.D. Simultaneous Determination of Human Erythrocyte Deformability and Adhesion Energy: A Novel Approach Using a Microfluidic Chamber and the “Glass Effect”. Cell Biochem Biophys 79, 49–55 (2021). https://doi.org/10.1007/s12013-020-00956-9

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12013-020-00956-9

Keywords

Navigation