Skip to main content
Log in

Retinal vessel segmentation using simple SPCNN model and line connector

  • Original article
  • Published:
The Visual Computer Aims and scope Submit manuscript

Abstract

The effective segmentation of retinal blood vessels is essential for the medical diagnosis of ophthalmology diseases. In this paper, a novel approach is presented to segment retinal vessels accurately and efficiently. Firstly, we propose a simple simplified pulse coupled neural network utilizing the similarity of adjacent neurons to acquire the basic structure of blood vessels. Then we apply a line connector to solve the problem of broken vessels occurring in the segmentation, in order to present a complete structure of the blood vessels and improve the accuracy of vessel identification. Experimental analyses on two publicly available databases show that the proposed methods with or without the line connector outperform the most existing methods in terms of average accuracy and have a fast response time. It is of great importance for medical diagnosis with high accuracy and short time consumption. Our methods are practicable either for retinal vessel segmentation, or for other applications of clinical research.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Yao, J., Yu, H., Hu, R.: A new sparse representation-based object segmentation framework. Vis. Comput. 33(2), 179–192 (2017)

    Article  Google Scholar 

  2. Luo, L., Wang, X., Hu, S., Hu, X., Zhang, H., Liu, Y., Zhang, J.: A unified framework for interactive image segmentation via fisher rules. Vis. Comput. 35(12), 1869–1882 (2019)

    Article  Google Scholar 

  3. Bi, L., Feng, D., Kim, J.: Dual-path adversarial learning for fully convolutional network (FCN)-based medical image segmentation. Vis. Comput. 34(6), 1043–1052 (2018)

    Article  Google Scholar 

  4. Fraz, M.M., Remagnino, P., Hoppe, A., Uyyanonvara, B., Rudnicka, A.R., Owen, C.G., Barman, S.A.: An ensemble classification-based approach applied to retinal blood vessel segmentation. IEEE Trans. Biomed. Eng. 59(9), 2538–2548 (2012)

    Article  Google Scholar 

  5. Sheng, B., Li, P., Mo, S., Li, H., Hou, X., Wu, Q., Qin, J., Fang, R., Feng, D.D.: Retinal vessel segmentation using minimum spanning superpixel tree detector. IEEE Trans. Cybern. 49(7), 2707–2719 (2019)

    Article  Google Scholar 

  6. Fraz, M.M., Remagnino, P., Hoppe, A., Uyyanonvara, B., Rudnicka, A.R., Owen, C.G., Barman, S.A.: Blood vessel segmentation methodologies in retinal images—a survey. Comput. Methods Programs Biomed. 108(1), 407–433 (2012)

    Article  Google Scholar 

  7. Yang, Y., Shao, F., Fu, Z., Fu, R.: Discriminative dictionary learning for retinal vessel segmentation using fusion of multiple features. Signal Image Video Process. 13(8), 1529–1537 (2019)

    Article  Google Scholar 

  8. Marin, D., Aquino, A., Gegundez-Arias, M.E., Bravo, J.M.: A new supervised method for blood vessel segmentation in retinal images by using gray-level and moment invariants-based features. IEEE Trans. Med. Imaging 30(1), 146–158 (2011)

    Article  Google Scholar 

  9. Wang, D., Hu, G., Lyu, C.: FRNet: an end-to-end feature refinement neural network for medical image segmentation. Vis. Comput. (2020). https://doi.org/10.1007/s00371-020-01855-z

  10. Jin, Q., Meng, Z., Pham, T.D., Chen, Q., Wei, L., Su, R.: Dunet: a deformable network for retinal vessel segmentation. Knowl. Based Syst. 178, 149–162 (2019)

    Article  Google Scholar 

  11. Remeseiro, B., Mendonça, A.M., Campilho, A.: Automatic classification of retinal blood vessels based on multilevel thresholding and graph propagation. Vis. Comput. (2020). https://doi.org/10.1007/s00371-020-01863-z

  12. Shukla, A.K., Pandey, R.K., Pachori, R.B.: A fractional filter based efficient algorithm for retinal blood vessel segmentation. Biomed. Signal Process. Control 59, 101883 (2020)

    Article  Google Scholar 

  13. Johnson, J.L., Ritter, D.: Observation of periodic waves in a pulse-coupled neuralnetwork. Opt. Lett. 18(15), 1253–5 (1993)

    Article  Google Scholar 

  14. Gray, C.M., Singer, W.: Stimulus-specific neuronal oscillations in orientation columns of cat visual cortex. Proc. Natl. Acad. Sci. U. S. A. 86(5), 1698–702 (1989)

    Article  Google Scholar 

  15. Ekblad, U., Kinser, J.M., Atmer, J., Zetterlund, N.: The intersecting cortical model in image processing. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrom. Detect. Assoc. Equip. 525(1), 392–396 (2004)

    Article  Google Scholar 

  16. Zhan, K., Zhang, H., Ma, Y.: New spiking cortical model for invariant texture retrieval and image processing. IEEE Trans. Neural Netw. 20(12), 1980–1986 (2009)

    Article  Google Scholar 

  17. Huang, Y., Ma, Y., Li, S., Zhan, K.: Application of heterogeneous pulse coupled neural network in image quantization. J. Electron. Imaging 25(6), 1–11 (2016)

    Article  Google Scholar 

  18. Chen, Y., Park, S., Ma, Y., Ala, R.: A new automatic parameter setting method of a simplified PCNN for image segmentation. IEEE Trans. Neural Netw. 22(6), 880–892 (2011)

    Article  Google Scholar 

  19. Yang, Z., Lian, J., Li, S., Guo, Y., Qi, Y., Ma, Y.: Heterogeneous SPCNN and its application in image segmentation. Neurocomputing 285, 196–203 (2018)

    Article  Google Scholar 

  20. Zwiggelaar, R., Astley, S.M., Boggis, C.R.M., Taylor, C.J.: Linear structures in mammographic images: detection and classification. IEEE Trans. Med. Imaging 23(9), 1077–1086 (2004)

    Article  Google Scholar 

  21. Dixon, R., Taylor, C.: Automated asbestos fibre counting. In: Institute of Physics, vol. 44, pp. 178–185 (1979)

  22. Zwiggelaar R., Parr T.C., Taylor C.J.: Finding orientated line patterns in digital mammographic images. In: Proceedings of 7th BMVC Edinburgh, pp. 715–724 (1996)

  23. Ricci, E., Perfetti, R.: Retinal blood vessel segmentation using line operators and support vector classification. IEEE Trans. Med. Imaging 26(10), 1357–1365 (2007)

    Article  Google Scholar 

  24. Zhou, C., Zhang, X., Chen, H.: A new robust method for blood vessel segmentation in retinal fundus images based on weighted line detector and hidden markov model. Comput. Methods Programs Biomed. 187, 105231 (2020)

    Article  Google Scholar 

  25. Staal, J., Abramoff, M.D., Niemeijer, M., Viergever, M.A., van Ginneken, B.: Ridge-based vessel segmentation in color images of the retina. IEEE Trans. Med. Imaging 23(4), 501–509 (2004)

    Article  Google Scholar 

  26. Hoover, A.D., Kouznetsova, V., Goldbaum, M.: Locating blood vessels in retinal images by piecewise threshold probing of a matched filter response. IEEE Trans. Med. Imaging 19(3), 203–210 (2000)

    Article  Google Scholar 

  27. Walter, T., Massin, P., Erginay, A., Ordonez, R., Jeulin, C., Klein, J.-C.: Automatic detection of microaneurysms in color fundus images. Med. Image Anal. 11(6), 555–566 (2007)

    Article  Google Scholar 

  28. Zuiderveld, K.: Contrast limited adaptive histogram equalization. Graph. Gems (1994). https://doi.org/10.1016/B978-0-12-336156-1.50061-6

    Article  Google Scholar 

  29. Ranganath, H.S., Kuntimad, G., Johnson, J.L.: Pulse coupled neural networks for image processing. In: Proceedings IEEE Southeastcon ’95. Visualize the Future, pp. 37–43 (1995)

  30. Otsu, N.: A threshold selection method from gray-level histograms. IEEE Trans. Syst. Man Cybern. 9(1), 62–66 (1979)

    Article  MathSciNet  Google Scholar 

  31. Gonzalez, R.C., Woods, R.E., Eddins, S.L.: Publishing house of electronics industry. In: Digital Image Processing Using MATLAB, 2nd Edition, vol. 9, pp. 468–469 (2009)

  32. You, X., Peng, Q., Yuan, Y., Cheung, Y.M., Lei, J.: Segmentation of retinal blood vessels using the radial projection and semi-supervised approach. Pattern Recognit. 44(10), 2314–2324 (2011)

    Article  Google Scholar 

  33. Araújo, R.J., Cardoso, J.S., Oliveira, H.P.: A single-resolution fully convolutional network for retinal vessel segmentation in raw fundus images. In: Ricci, E., Rota, Bulò S., Snoek, C., Lanz, O., Messelodi, S., Sebe, N. (eds.) Image Analysis and Processing—ICIAP 2019, pp. 59–69. Springer, Cham (2019)

    Chapter  Google Scholar 

  34. Fraz, M.M., Barman, S.A., Remagnino, P., Hoppe, A., Basit, A., Uyyanonvara, B., Rudnicka, A.R., Owen, C.G.: An approach to localize the retinal blood vessels using bit planes and centerline detection. Comput. Methods Programs Biomed. 108(2), 600–616 (2012)

    Article  Google Scholar 

  35. Nguyen, U.T.V., Bhuiyan, A., Park, L.A.F., Ramamohanarao, K.: An effective retinal blood vessel segmentation method using multi-scale line detection. Pattern Recognit. 46(3), 703–715 (2013)

    Article  Google Scholar 

  36. Yin, B., Li, H., Sheng, B., Hou, X., Chen, Y., Wu, W., Li, P., Shen, R., Bao, Y., Jia, W.: Vessel extraction from non-fluorescein fundus images using orientation-aware detector. Med. Image Anal. 26(1), 232–242 (2015)

    Article  Google Scholar 

  37. Khomri, B., Christodoulidis, A., Djerou, L., Babahenini, M.C., Cheriet, F.: Retinal blood vessel segmentation using the elite-guided multi-objective artificial bee colony algorithm. IET Image Process. 12(12), 2163–2171 (2018)

    Article  Google Scholar 

  38. Wang, W., Wang, W., Hu, Z.: Segmenting retinal vessels with revised top-bottom-hat transformation and flattening of minimum circumscribed ellipse. Med. Biol. Eng. Comput. 57(7), 1481–1496 (2019)

    Article  Google Scholar 

  39. Shah, S.A.A., Shahzad, A., Khan, M.A., Lu, C., Tang, T.B.: Unsupervised method for retinal vessel segmentation based on gabor wavelet and multiscale line detector. IEEE Access 7, 167221–167228 (2019)

    Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the funding support from the National Natural Science Foundation of China under Grant U1701265.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Feng Liu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, L., Liu, F. Retinal vessel segmentation using simple SPCNN model and line connector. Vis Comput 38, 135–148 (2022). https://doi.org/10.1007/s00371-020-02008-y

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00371-020-02008-y

Keywords

Navigation