Skip to main content
Log in

Growth regulation of luminescent gold nanoparticles directed from amphiphilic block copolymers: highly-controlled nanoassemblies toward tailored in-vivo transport

  • Articles
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

The understanding of amphiphilic block copolymers (ABC) in encapsulation and transport of inorganic nanomedicines is highly desired. Still, it remains limited due to the challenges in the fabrication of nanoassemblies (NAs) with highly-controlled shape and loading of nanoparticles. Herein, through growth regulation of luminescent gold nanoparticles (AuNPs) by different reductants with ABC pluronic F127 as a template, a straightforward strategy is reported for in-situ fabrication of three well-controlled gold NAs (AuNAs) that display tunable shapes from spherical to elongated nanostructures and controllable surface chemistry and loading of AuNPs with distinct emissions but identical individual AuNP size. The three AuNAs exhibit tailored in-vivo transport behaviours: those with spherical shape and more hydrophilic surface show longer blood retention with higher tumor-targeting efficiency (∼25.3% injection dose/g) and excellent long-term near-infrared tumor imaging even after 96 h post-injection. These findings provide a useful guidance in designing specific nanostructures for future nanomedicine transport.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Hickey RJ, Haynes AS, Kikkawa JM, Park SJ. J Am Chem Soc, 2011, 133: 1517–1525

    CAS  PubMed  Google Scholar 

  2. Rösler A, Vandermeulen GWM, Klok HA. Adv Drug Deliver Rev, 2012, 64: 270–279

    Google Scholar 

  3. Cabral H, Miyata K, Osada K, Kataoka K. Chem Rev, 2018, 118: 6844–6892

    CAS  PubMed  Google Scholar 

  4. Elsabahy M, Heo GS, Lim SM, Sun G, Wooley KL. Chem Rev, 2015, 115: 10967–11011

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Christian DA, Cai S, Garbuzenko OB, Harada T, Zajac AL, Minko T, Discher DE. Mol Pharm, 2009, 6: 1343–1352

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Geng Y, Discher DE. Polymer, 2006, 47: 2519–2525

    CAS  Google Scholar 

  7. Tyrrell ZL, Shen Y, Radosz M. ProgPolym Sci, 2010, 35: 1128–1143

    CAS  Google Scholar 

  8. Venkataraman S, Hedrick JL, Ong ZY, Yang C, Ee PLR, Hammond PT, Yang YY. Adv Drug Deliver Rev, 2011, 63: 1228–1246

    CAS  Google Scholar 

  9. Geng Y, Dalhaimer P, Cai S, Tsai R, Tewari M, Minko T, Discher DE. Nat Nanotech, 2007, 2: 249–255

    CAS  Google Scholar 

  10. Xiao J, He Q, Qiu S, Li H, Wang B, Zhang B, Bu W. Sci China Chem, 2020, 63: 792–801

    CAS  Google Scholar 

  11. Kataoka K, Harada A, Nagasaki Y. Adv Drug Deliver Rev, 2012, 64: 37–48

    Google Scholar 

  12. Luo Z, Yuan X, Yu Y, Zhang Q, Leong DT, Lee JY, Xie J. JAm Chem Soc, 2012, 134: 16662–16670

    CAS  Google Scholar 

  13. Kang X, Zhu M. Chem Soc Rev, 2019, 48: 2422–2457

    CAS  PubMed  Google Scholar 

  14. Zhuang S, Liao L, Yuan J, Xia N, Zhao Y, Wang C, Gan Z, Yan N, He L, Li J, Deng H, Guan Z, Yang J, Wu Z. Angew Chem Int Ed, 2019, 58: 4510–4514

    CAS  Google Scholar 

  15. Zhou C, Sun C, Yu M, Qin Y, Wang J, Kim M, Zheng J. J Phys Chem C, 2010, 114: 7727–7732

    CAS  Google Scholar 

  16. Wang L, Zhang C, Li T, Duan M, Xia F, Li X, Song C, Pan S, Liu B, Cui D. Nanoscale, 2019, 11: 22237–22242

    CAS  PubMed  Google Scholar 

  17. Liu J, Yu M, Zhou C, Yang S, Ning X, Zheng J. J Am Chem Soc, 2013, 135: 4978–4981

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Gong L, Chen Y, He K, Liu J. ACS Nano, 2019, 13: 1893–1899

    CAS  PubMed  Google Scholar 

  19. Chen Y, Li L, Gong L, Zhou T, Liu J. Adv Funct Mater, 2019, 29: 1806945

    Google Scholar 

  20. Crawford SE, Hartmann MJ, Millstone JE. Acc Chem Res, 2019, 52: 695–703

    CAS  PubMed  Google Scholar 

  21. Yu M, Xu J, Zheng J. Angew Chem Int Ed, 2019, 58: 4112–4128

    CAS  Google Scholar 

  22. Gong L, Wang Y, Liu J. Biomater Sci, 2017, 5: 1393–1406

    CAS  PubMed  Google Scholar 

  23. Peng C, Yu M, Zheng J. Nano Lett, 2020, 20: 1378–1382

    CAS  PubMed  Google Scholar 

  24. Peng H, Tang H, Jiang J. Sci China Chem, 2016, 59: 783–793

    CAS  Google Scholar 

  25. Zhang C, Zhang A, Hou W, Li T, Wang K, Zhang Q, de la Fuente JM, Jin W, Cui D. ACS Nano, 2018, 12: 4408–4418

    CAS  PubMed  Google Scholar 

  26. Xia F, Hou W, Zhang C, Zhi X, Cheng J, de la Fuente JM, Song J, Cui D. Acta Biomater, 2018, 68: 308–319

    CAS  PubMed  Google Scholar 

  27. Choi HS, Liu W, Misra P, Tanaka E, Zimmer JP, Itty Ipe B, Bawendi MG, Frangioni JV. Nat Biotechnol, 2007, 25: 1165–1170

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Du B, Jiang X, Das A, Zhou Q, Yu M, Jin R, Zheng J. Nat Nanotech, 2017, 12: 1096–1102

    CAS  Google Scholar 

  29. Liu J, Yu M, Ning X, Zhou C, Yang S, Zheng J. Angew Chem Int Ed, 2013, 52: 12572–12576

    CAS  Google Scholar 

  30. Zhou T, Zhu J, Gong L, Nong L, Liu J. J Am Chem Soc, 2019, 141: 2852–2856

    CAS  PubMed  Google Scholar 

  31. Ma H, Zhou T, Dai Z, Hu J, Liu J. Adv Opt Mater, 2019, 7: 1900326

    Google Scholar 

  32. Zheng J, Zhou C, Yu M, Liu J. Nanoscale, 2012, 4: 4073–4083

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Shichibu Y, Negishi Y, Tsunoyama H, Kanehara M, Teranishi T, Tsukuda T. Small, 2007, 3: 835–839

    CAS  PubMed  Google Scholar 

  34. Huang Y, Fuksman L, Zheng J. Dalton Trans, 2018, 47: 6267–6273

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Blanazs A, Armes SP, Ryan AJ. Macromol Rapid Commun, 2009, 30: 267–277

    CAS  PubMed  Google Scholar 

  36. Guo L, Colby RH, Lin MY, Dado GP. J Rheol, 2001, 45: 1223–1243

    CAS  Google Scholar 

  37. Wang X, Gao P, Yang Y, Guo H, Wu D. Nat Commun, 2018, 9: 2772

    PubMed  PubMed Central  Google Scholar 

  38. Li W, Liu S, Deng R, Wang J, Nie Z, Zhu J. Macromolecules, 2013, 46: 2282–2291

    CAS  Google Scholar 

  39. Blanco E, Shen H, Ferrari M. Nat Biotechnol, 2015, 33: 941–951

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Matsumura Y, Maeda H. Cancer Res, 1986, 46: 6387–6392

    CAS  PubMed  Google Scholar 

  41. Nasongkla N, Chen B, Macaraeg N, Fox ME, Frechet JMJ, Szoka FC. J Am Chem Soc, 2009, 131: 3842–3843

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Jiang X, Du B, Zheng J. Nat Nanotechnol, 2019, 14: 874–882

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Cheng L, Yang K, Li Y, Zeng X, Shao M, Lee ST, Liu Z. Biomaterials, 2012, 33: 2215–2222

    CAS  PubMed  Google Scholar 

  44. Yu Z, Ge Y, Sun Q, Pan W, Wan X, Li N, Tang B. Chem Sci, 2018, 9: 3563–3569

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Wilhelm S, Tavares AJ, Dai Q, Ohta S, Audet J, Dvorak HF, Chan WCW. Nat Rev Mater, 2016, 1: 16014

    CAS  Google Scholar 

  46. Jiang T, Olson ES, Nguyen QT, Roy M, Jennings PA, Tsien RY. Proc Natl Acad Sci USA, 2004, 101: 17867–17872

    CAS  PubMed  Google Scholar 

  47. Zhang E, Zhang C, Su Y, Cheng T, Shi C. Drug Discovery Today, 2011, 16: 140–146

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (21573078, 21907032, 22022403), Guangdong Natural Science Funds for Distinguished Young Scholars (2016A030306024), the Natural Science Foundation of Guangdong Province (2018A030310376) and Guangzhou Science and Technology Project (201904010055).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jinbin Liu.

Additional information

Conflict of interest

The authors declare no conflict of interest.

Supporting information

11426_2020_9862_MOESM1_ESM.docx

Growth Regulation of Luminescent Gold Nanoparticles Directed from Amphiphilic Block Copolymers: Highly-Controlled Nanoassemblies Toward Tailored In-Vivo Transportation

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nong, L., Zhou, T., Chen, H. et al. Growth regulation of luminescent gold nanoparticles directed from amphiphilic block copolymers: highly-controlled nanoassemblies toward tailored in-vivo transport. Sci. China Chem. 64, 157–164 (2021). https://doi.org/10.1007/s11426-020-9862-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-020-9862-1

Navigation