Skip to main content
Log in

Sulfonyldibenzene-based hole-transporting materials for efficient n-i-p perovskite solar cells

  • Articles
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

Organic hole-transporting materials (HTMs) are an essential component in conventional perovskite solar cells (PSCs). In this work, two sulfonyldibenzene-based molecules, named CS-04 and CS-05, are synthesized and employed as HTMs in n-i-p PSCs. In comparison with CS-04, the carbazole-substituted methoxytriphenylamine (CzMOTPA) group in CS-05 exhibits an increased degree of molecular distortion, thus endowing CS-05 with excellent solvent solubility and film-formation ability. Moreover, CS-05 shows a high hole mobility, superior hole extraction and hole transporting properties. As a result, CS-05 yields impressive device performances with a high power conversion efficiency (PCE) of 20.15%, while that of CS-04 based device is 19.50%, which is comparable to that of the Spiro-OMeTAD based control device (19.59%). This finding illustrates the potential of sulfonyldibenzene-based molecules for the applications in PSCs, and also provides a novel avenue to improve the performances and stability of PSCs by tailoring the sulfonyldibenzene-based molecules.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. NREL Efficiency Chart Vol. 2019: (accessed: August 2019)

  2. Kojima A, Teshima K, Shirai Y, Miyasaka T. J Am Chem Soc, 2009, 131: 6050–6051

    CAS  PubMed  Google Scholar 

  3. Jena AK, Kulkarni A, Miyasaka T. Chem Rev, 2019, 119: 3036–3103

    CAS  PubMed  Google Scholar 

  4. Urieta-Mora J, García-Benito I, Molina-Ontoria A, Martín N. Chem Soc Rev, 2018, 47: 8541–8571

    CAS  PubMed  Google Scholar 

  5. Liu F, Li Q, Li Z. Asian J Org Chem, 2018, 7: 2182–2200

    CAS  Google Scholar 

  6. Wang F, Cao Y, Chen C, Chen Q, Wu X, Li X, Qin T, Huang W. Adv Funct Mater, 2018, 28: 1803753

    Google Scholar 

  7. Rakstys K, Igci C, Nazeeruddin MK. Chem Sci, 2019, 10: 6748–6769

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Yu Z, Sun L. Adv Energy Mater, 2015, 5: 1500213

    Google Scholar 

  9. Cheng M, Zuo C, Wu Y, Li Z, Xu B, Hua Y, Ding L. Sci Bull, 2020, 65: 1237–1241

    CAS  Google Scholar 

  10. Xue R, Zhang M, Xu G, Zhang J, Chen W, Chen H, Yang M, Cui C, Li Y, Li Y. J Mater Chem A, 2018, 6: 404–413

    CAS  Google Scholar 

  11. Xue R, Zhang M, Luo D, Chen W, Zhu R, Yang YM, Li Y, Li Y. Sci China Chem, 2020, 63: 987–996

    CAS  Google Scholar 

  12. Jia X, Zhang Y, Zhang J, Sun Q, Guo H, Wang Y, Zhang S, Yuan N, Ding J. Sci China Chem, 2020, 63: 827–832

    CAS  Google Scholar 

  13. Wang Y, Liao Q, Chen J, Huang W, Zhuang X, Tang Y, Li B, Yao X, Feng X, Zhang X, Su M, He Z, Marks TJ, Facchetti A, Guo X. J Am Chem Soc, 2020, 142: 16632–16643

    CAS  PubMed  Google Scholar 

  14. Chen W, Wang Y, Liu B, Gao Y, Wu Z, Shi Y, Tang Y, Yang K, Zhang Y, Sun W, Feng X, Laquai F, Woo HY, Djurišić AB, Guo X, He Z. Sci China Chem, 2020, 63: 1785–1792

    Google Scholar 

  15. Huang P, Manju P, Kazim S, Sivakumar G, Salado M, Misra R, Ahmad S. ACS Appl Mater Interfaces, 2020, 12: 22881–22890

    CAS  PubMed  Google Scholar 

  16. Kim G-, Choi H, Kim M, Lee J, Son SY, Park T. Adv Energy Mater, 2020, 10: 1903403

    CAS  Google Scholar 

  17. Wang Y, Chen W, Wang L, Tu B, Chen T, Liu B, Yang K, Koh CW, Zhang X, Sun H, Chen G, Feng X, Woo HY, Djurišić AB, He Z, Guo X. Adv Mater, 2019, 31: 1902781

    Google Scholar 

  18. Yang Z, Mao Z, Xie Z, Zhang Y, Liu S, Zhao J, Xu J, Chi Z, Aldred MP. Chem Soc Rev, 2017, 46: 915–1016

    CAS  PubMed  Google Scholar 

  19. Gangala S, Misra R. J Mater Chem A, 2018, 6: 18750–18765

    CAS  Google Scholar 

  20. Xu S, Liu T, Mu Y, Wang YF, Chi Z, Lo CC, Liu S, Zhang Y, Lien A, Xu J. Angew Chem Int Ed, 2015, 54: 874–878

    CAS  Google Scholar 

  21. Chen J, Xia J, Gao WJ, Yu HJ, Zhong JX, Jia C, Qin YS, She Z, Kuang DB, Shao G. ACS Appl Mater Interfaces, 2020, 12: 21088–21099

    CAS  PubMed  Google Scholar 

  22. Zhang M, Wang G, Zhao D, Huang C, Cao H, Chen M. Chem Sci, 2017, 8: 7807–7814

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Qin T, Wu F, Ma D, Mu Y, Chen X, Yang Z, Zhu L, Zhang Y, Zhao J, Chi Z. ACS Mater Lett, 2020, 2: 1093–1100

    CAS  Google Scholar 

  24. Jiang Q, Ni Z, Xu G, Lin Y, Rudd PN, Xue R, Li Y, Li Y, Gao Y, Huang J. Adv Mater, 2020, 32: 2001581

    CAS  Google Scholar 

  25. Yu W, Yang Q, Zhang J, Tu D, Wang X, Liu X, Li G, Guo X, Li C. ACS Appl Mater Interfaces, 2019, 11: 30065–30071

    CAS  PubMed  Google Scholar 

  26. Christians JA, Schulz P, Tinkham JS, Schloemer TH, Harvey SP, Tremolet de Villers BJ, Sellinger A, Berry JJ, Luther JM. Nat Energy, 2018, 3: 68–74

    CAS  Google Scholar 

  27. Shi Y, Hou K, Wang Y, Wang K, Ren HC, Pang MY, Chen F, Zhang S. J Mater Chem A, 2016, 4: 5415–5422

    CAS  Google Scholar 

  28. Malinauskas T, Saliba M, Matsui T, Daskeviciene M, Urnikaite S, Gratia P, Send R, Wonneberger H, Bruder I, Graetzel M, Getautis V, Nazeeruddin MK. Energy Environ Sci, 2016, 9: 1681–1686

    CAS  Google Scholar 

  29. Lu C, Choi IT, Kim J, Kim HK. J Mater Chem A, 2017, 5: 20263–20276

    CAS  Google Scholar 

  30. Daškevičiūtė Š, Sakai N, Franckevičius M, Daškevičienė M, Magomedov A, Jankauskas V, Snaith HJ, Getautis V. Adv Sci, 2018, 5: 1700811

    Google Scholar 

  31. Zhang J, Xu B, Johansson MB, Vlachopoulos N, Boschloo G, Sun L, Johansson EMJ, Hagfeldt A. ACS Nano, 2016, 10: 6816–6825

    CAS  PubMed  Google Scholar 

  32. Liu X, Ma S, Mateen M, Shi P, Liu C, Ding Y, Cai M, Guli M, Nazeeruddin MK, Dai S. Sustain Energy Fuels, 2020, 4: 1875–1882

    CAS  Google Scholar 

  33. Iacobellis R, Masi S, Rizzo A, Grisorio R, Ambrico M, Colella S, Ambrico PF, Suranna GP, Listorti A, De Marco L. ACS Appl Energy Mater, 2018, 1: 1069–1076

    CAS  Google Scholar 

  34. Benhattab S, Cho AN, Nakar R, Berton N, Tran-Van F, Park NG, Schmaltz B. Org Electron, 2018, 56: 27–30

    CAS  Google Scholar 

  35. Liu X, Ding X, Ren Y, Yang Y, Ding Y, Liu X, Alsaedi A, Hayat T, Yao J, Dai S. J Mater Chem C, 2018, 6: 12912–12918

    CAS  Google Scholar 

  36. Liu X, Ma S, Ding Y, Gao J, Liu X, Yao J, Dai S. Sol RRL, 2019, 3: 1800337

    Google Scholar 

  37. Liu X, Shi X, Liu C, Ren Y, Wu Y, Yang W, Alsaedi A, Hayat T, Kong F, Liu X, Ding Y, Yao J, Dai S. J Phys Chem C, 2018, 122: 26337–26343

    CAS  Google Scholar 

  38. Song C, Li X, Wang Y, Fu S, Wan L, Liu S, Zhang W, Song W, Fang J. J Mater Chem A, 2019, 7: 19881–19888

    CAS  Google Scholar 

  39. Ganesan P, Fu K, Gao P, Raabe I, Schenk K, Scopelliti R, Luo J, Wong LH, Grätzel M, Nazeeruddin MK. Energy Environ Sci, 2015, 8: 1986–1991

    CAS  Google Scholar 

  40. Rakstys K, Abate A, Dar MI, Gao P, Jankauskas V, Jacopin G, Kamarauskas E, Kazim S, Ahmad S, Grätzel M, Nazeeruddin MK. J Am Chem Soc, 2015, 137: 16172–16178

    CAS  PubMed  Google Scholar 

  41. Xie Y, Wang X, Chen Q, Liu S, Yun Y, Liu Y, Chen C, Wang J, Cao Y, Wang F, Qin T, Huang W. Macromolecules, 2019, 52: 4757–4764

    CAS  Google Scholar 

  42. Wang B, Zeng Q, Sun Z, Xue S, Liang M. Dyes Pigments, 2019, 165: 81–89

    CAS  Google Scholar 

  43. Lu J, Chen SC, Zheng Q. Sci China Chem, 2019, 62: 1044–1050

    CAS  Google Scholar 

  44. Wei Q, Ye Z, Ren X, Fu F, Yang Z, Liu S, Yang D. Sci China Chem, 2020, 63: 818–826

    CAS  Google Scholar 

  45. Xiao Q, Tian J, Xue Q, Wang J, Xiong B, Han M, Li Z, Zhu Z, Yip HL, Li Z. Angew Chem Int Ed, 2019, 58: 17724–17730

    CAS  Google Scholar 

  46. Li D, Shao JY, Li Y, Li Y, Deng LY, Zhong YW, Meng Q. Chem Commun, 2018, 54: 1651–1654

    CAS  Google Scholar 

  47. Shen C, Wu Y, Zhang H, Li E, Zhang W, Xu X, Wu W, Tian H, Zhu WH. Angew Chem Int Ed, 2019, 58: 3784–3789

    CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (51733010, 21672267, 51973239 and 52073316), the Science and Technology Planning Project of Guangdong (2015B090913003), and the Fundamental Research Funds for the Central Universities (19lgpy118, XDJK2019B065 and XDJK2020B002). We thank Dr. Weijie Chi for helping with the analysis of DFT calculation results.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Fei Wu, Linna Zhu, Juan Zhao or Zhenguo Chi.

Additional information

Conflict of interest

The authors declare no conflict of interest.

Supporting Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qin, T., Wu, F., Mu, Y. et al. Sulfonyldibenzene-based hole-transporting materials for efficient n-i-p perovskite solar cells. Sci. China Chem. 64, 127–133 (2021). https://doi.org/10.1007/s11426-020-9899-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-020-9899-x

Navigation