Skip to main content
Log in

A novel heterogeneous Co(II)-Fenton-like catalyst for efficient photodegradation by visible light over extended pH

  • Articles
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

A novel CoII-Fenton-like heterogeneous catalyst, (H3O)2[CoII(phen)(H2O)2]2[MoVI5O15(PO4)2]·4H2O (phen=1,10-phenanthroline, C12N2H8) (1), is synthesized and utilized for photocatalytic degradation of organic dyes and antibiotic in a wide range of pH. The experimental results show that 1 acting as the Fenton-like catalyst with H2O2 exhibits remarkable activity at pH 3–9 under vis-light irradiation and is merited with excellent recyclability and reusability. A variety of analytical methods, including in-situ electron paramagnetic resonance (EPR) spectroscopy and density functional theory (DFT) calculations, are applied to study the mechanism on generation of ·OH and O2·− radicals for photocatalytic degradation. It suggests that, unlike the classical Fenton process involving the redox transformation of the central cations, the generation of ·OH and O2·− radicals is associated with the substitution of the coordinating water molecules at Co(II) by H2O2 and/or OEH, followed by the light-driven O-O bond cleavage and dissociation The outcomes of this study are striking which overcome the obstacles in the classical FeII-Fenton process, including the slow redox transformation between Fe(II) and Fe(III) and the production of massive iron precipitates especially at elevated pH It opens up new avenues for the development of the high-performance Fenton(-like) catalysts for photocatalytic degradation over extended pH and provides new insight into the related process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Neyens E, Baeyens J. J Hazard Mater, 2003, 98: 33–50

    CAS  PubMed  Google Scholar 

  2. Subramanian G, Madras G. Chem Commun, 2017, 53: 1136–1139

    CAS  Google Scholar 

  3. Oturan MA, Aaron JJ. Crit Rev Environ Sci Tech, 2014, 44: 2577–2641

    CAS  Google Scholar 

  4. Pliego G, Zazo JA, Garcia-Muñoz P, Munoz M, Casas JA, Rodriguez JJ. Crit Rev Environ Sci Tech, 2015, 45: 2611–2692

    CAS  Google Scholar 

  5. Zhu Y, Zhu R, Xi Y, Zhu J, Zhu G, He H. Appl Catal B-Environ, 2019, 255: 117739

    CAS  Google Scholar 

  6. Soon AN, Hameed BH. Desalination, 2011, 269: 1–16

    CAS  Google Scholar 

  7. Zhang Y, Zhou M. J Hazard Mater, 2019, 362: 436–450

    CAS  PubMed  Google Scholar 

  8. Lipczynska-Kochany E, Kochany J. Chemosphere, 2008, 73: 745–750

    CAS  PubMed  Google Scholar 

  9. An X, Tang Q, Lan H, Liu H, Qu J. Appl Catal B-Environ, 2019, 244: 407–413

    CAS  Google Scholar 

  10. Gu T, Dong H, Lu T, Han L, Zhan Y. J Hazard Mater, 2019, 377: 365–370

    CAS  PubMed  Google Scholar 

  11. Navalon S, Alvaro M, Garcia H. Appl Catal B-Environ, 2010, 99: 1–26

    CAS  Google Scholar 

  12. Bokare AD, Choi W. J Hazard Mater, 2014, 275: 121–135

    CAS  PubMed  Google Scholar 

  13. Goldstein S, Meyerstein D, Czapski G. Free Radical Biol Med, 1993, 15: 435–445

    CAS  Google Scholar 

  14. Xi Y, Sun Z, Hreid T, Ayoko GA, Frost RL. Chem Eng J, 2014, 247: 66–74

    CAS  Google Scholar 

  15. Wang N, Zhu L, Lei M, She Y, Cao M, Tang H. ACS Catal, 2011, 1: 1193–1202

    CAS  Google Scholar 

  16. Zubir NA, Yacou C, Motuzas J, Zhang X, Zhao XS, Diniz da Costa JC. Chem Commun, 2015, 51: 9291–9293

    CAS  Google Scholar 

  17. Sharma A, Lee BK. J Environ Manage, 2016, 181: 563–573

    CAS  PubMed  Google Scholar 

  18. Burg A, Shusterman I, Kornweitz H, Meyerstein D. Dalton Trans, 2014, 43: 9111–9115

    CAS  PubMed  Google Scholar 

  19. Li BQ, Tang C, Wang HF, Zhu XL, Zhang Q. Sci Adv, 2016, 2: e1600495

    PubMed  PubMed Central  Google Scholar 

  20. Sun H, Chen T, Kong L, Cai Q, Xiong Y, Tian S. I&EC Res, 2015, 54: 5468–5474

    CAS  Google Scholar 

  21. Mahamallik P, Pal A. Catal Today, 2020, 348: 212–222

    CAS  Google Scholar 

  22. Sun Y, Pignatello JJ. J Agric Food Chem, 1992, 40: 322–327

    CAS  Google Scholar 

  23. Li Y, Ouyang S, Xu H, Wang X, Bi Y, Zhang Y, Ye J. J Am Chem Soc, 2016, 138: 13289–13297

    CAS  PubMed  Google Scholar 

  24. Georgi A, Schierz A, Trommler U, Horwitz CP, Collins TJ, Kopinke FD. Appl Catal B-Environ, 2007, 72: 26–36

    CAS  Google Scholar 

  25. De Laat J, Dao YH, Hamdi El Najjar N, Daou C. Water Res, 2011, 45: 5654–5664

    CAS  PubMed  Google Scholar 

  26. Li YC, Bachas LG, Bhattacharyya D. Environ Eng Sci, 2005, 22: 756–771

    CAS  Google Scholar 

  27. de Azambuja F, Parac-Vogt TN. ACS Catal, 2019, 9: 10245–10252

    CAS  Google Scholar 

  28. Chen WH, Wu HL, Yu XL, Lin SL, Hu ZB, Qiu ZH, Zhang ZS. J Clust Sci, 2020, 31: 63–70

    CAS  Google Scholar 

  29. Wilke TJ, Barteau MA. J Catal, 2020, 382: 286–294

    CAS  Google Scholar 

  30. Chen WH, Hu ZB, Zhou JC, Xiong JH, Luo JS, Zhang HQ, Mi JX. Eur J Inorg Chem, 2019, 3015–3022

  31. Brese NE, O’Keeffe M. Acta Crystlogr B Struct Sci, 1991, 47: 192–197

    Google Scholar 

  32. Hiskia A, Troupis A, Antonaraki S, Gkika E, Papaconstantinou PKE. Int J Environ Anal Chem, 2006, 86: 233–242

    CAS  Google Scholar 

  33. Sun LZ, Sun W, Ren WJ, Zhang JY, Huang YX, Sun ZM, Pan Y, Mi JX. J Solid State Chem, 2014, 212: 48–57

    CAS  Google Scholar 

  34. Wagner CD, Riggs WM, Davis LE, Moulder JF, Muilenberg GE. Perkin Elmer Corp MI, 1981

  35. Jing B, Hutin M, Connor E, Cronin L, Zhu Y. Chem Sci, 2013, 4: 3813–3826

    Google Scholar 

  36. Dui XJ, Yang WB, Wu XY, Kuang X, Liao JZ, Yu R, Lu CZ. Dalton Trans, 2015, 44: 9496–9505

    CAS  PubMed  Google Scholar 

  37. Fei BL, Deng NP, Wang JH, Liu QB, Long JY, Li YG, Mei X. J Hazard Mater, 2017, 340: 326–335

    CAS  PubMed  Google Scholar 

  38. Chen H, Zhang L, Zeng H, Yin D, Zhai Q, Zhao X, Li J. J Mol Catal A-Chem, 2015, 406: 72–77

    CAS  Google Scholar 

  39. Menezes PW, Panda C, Loos S, Bunschei-Bruns F, Walter C, Schwarze M, Deng X, Dau H, Driess M. Energy Environ Sci, 2018, 11: 1287–1298

    CAS  Google Scholar 

  40. Bolobajev J, Trapido M, Goi A. Chemosphere, 2016, 153: 220–226

    CAS  PubMed  Google Scholar 

  41. Liang J, Jin Y, Wen X, Mi J, Wu Y. Environ Pollut, 2020, 265: 114202

    CAS  PubMed  Google Scholar 

  42. Liu F, Feng N, Wang Q, Xu J, Qi G, Wang C, Deng F. J Am Chem Soc, 2017, 139: 10020–10028

    CAS  PubMed  Google Scholar 

  43. Moreno-González M, Blasco T, Góra-Marek K, Palomares AE, Corma A. Catal Today, 2014, 227: 123–129

    Google Scholar 

  44. Neukermans S, Hereijgers J, Vincent Ching HY, Samanipour M, Van Doorslaer S, Hubin A, Breugelmans T. Electrochem Commun, 2018, 97: 42–45

    CAS  Google Scholar 

  45. Li Z, Xiao JD, Jiang HL. ACS Catal, 2016, 6: 5359–5365

    CAS  Google Scholar 

  46. Garai M, Dey D, Yadav HR, Maji M, Choudhury AR, Biswas B. J Chem Sci, 2017, 129: 1513–1520

    CAS  Google Scholar 

  47. Handel RW, Willms H, Jameson GB, Berry KJ, Moubaraki B, Murray KS, Brooker S. Eur J Inorg Chem, 2010, 2010: 3317–3327

    Google Scholar 

  48. Reimann CW. J Res Natl Bur Stan Sect A, 1966, 70A: 417–419

    Google Scholar 

  49. Shi SY, Zou YC, Cui XB, Xu JN, Wang Y, Wang GW, Yang GD, Xu JQ, Wang TG, Gao ZM. CrystEngComm, 2010, 12: 2122–2128

    CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (21872105, 22072107, 21802142), the Natural Science Foundation of Fujian Province (2020J01367), the Natural Science Foundation of Longyan City (2018LYF8010) and the Science & Technology Commission of Shanghai Municipality (19DZ2271500). We are indebted to Prof. Xuxu Wang (Fuzhou University) for valuable comments and suggestions.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Wu-Hua Chen, Haifeng Wang or Zuofeng Chen.

Additional information

Conflict of interest

The authors declare no conflict of interest.

Supporting Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, WH., Xiong, JH., Teng, X. et al. A novel heterogeneous Co(II)-Fenton-like catalyst for efficient photodegradation by visible light over extended pH. Sci. China Chem. 63, 1825–1836 (2020). https://doi.org/10.1007/s11426-020-9885-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-020-9885-3

Navigation