Skip to main content
Log in

Non-metallic electronic regulation in CuCo oxy-/thio-spinel as advanced oxygen evolution electrocatalysts

  • Articles
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

Developing cost-effective and high-performance oxygen evolution reaction (OER) electrocatalysts has become the intense research on pursuing emerging renewable energy conversion, in which exploring and investigating the intrinsic nature of efficient and stable CuCo spinel catalysts toward OER in alkaline media is highly desirable. Herein, Cu1−xCo2+xO4 oxy-spinel nanoflakes are fabricated by a facile hydrothermal method with the oxidation of ammonia water. In the same condition, Cu1−x-Co2+xS4 thio-spinel nanospheres are formed without oxidation. In OER process, the as-obtained Cu1−xCo2+xO4 nanoflakes and Cu1−xCo2+xS4 nanospheres possess the anodic overpotential of 267 and 297 mV in alkaline media to drive the current density of 10 mA/cm2, respectively, outperforming the state-of-the-art noble metal catalyst of RuO2. X-ray photoelectron spectroscopy analysis exhibits the higher ratio value of Co(III)/Co(II) in Cu1−xCo2+xO4 than that in Cu1−xCo2+xS4, suggesting that the strongly-electronegative oxygen efficiently predominates in regulating valence states of Co active sites in spinel structures. Remarkably, density functional theory simulation further reveals that the increased valence state of Co could accelerate the electron exchange between catalysts and oxygen adsorbates during electrocatalysis, thus contributing to the higher OER activity of Cu1−xCo2+xO4 catalysts. This work provides deep insight regarding the significance of non-metal element (O and S) in CuCo spinel structure catalysts, as well as presents a promising approach to exploit higher performance and grasp the mechanism of various non-noble-metal spinel catalysts for water oxidation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Song Z, Ding J, Liu B, Liu X, Han X, Deng Y, Hu W, Zhong C. Adv Mater, 2020, 32: 1908127

    Article  CAS  Google Scholar 

  2. Kou T, Yang Y, Yao B, Li Y. Small Methods, 2018, 2: 1800152

    Article  CAS  Google Scholar 

  3. Wang J, Han L, Huang B, Shao Q, Xin HL, Huang X. Nat Commun, 2019, 10: 5692

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Chen LN, Yu WS, Wang T, Yang XD, Yang HJ, Chen ZX, Wang T, Tian N, Zhou ZY, Sun SG. Sci China Chem, 2020, 63: 198–202

    Article  CAS  Google Scholar 

  5. Fu Y, Cao F, Wu F, Diao Z, Chen J, Shen S, Li L. Adv Funct Mater, 2018, 28: 1706785

    Article  CAS  Google Scholar 

  6. Meng L, Wang S, Cao F, Tian W, Long R, Li L. Angew Chem Int Ed, 2019, 58: 6761–6765

    Article  CAS  Google Scholar 

  7. Zhou P, He J, Zou Y, Wang Y, Xie C, Chen R, Zang S, Wang S. Sci China Chem, 2019, 62: 1365–1370

    Article  CAS  Google Scholar 

  8. Deng X, Tüysüz H. ACS Catal, 2014, 4: 3701–3714

    Article  CAS  Google Scholar 

  9. Reier T, Nong HN, Teschner D, Schlögl R, Strasser P. Adv Energy Mater, 2017, 7: 1601275

    Article  CAS  Google Scholar 

  10. Buvat G, Eslamibidgoli MJ, Youssef AH, Garbarino S, Ruediger A, Eikerling M, Guay D. ACS Catal, 2020, 10: 806–817

    Article  CAS  Google Scholar 

  11. Wang B, Huang H, Huang M, Yan P, Isimjan TT, Yang X. Sci China Chem, 2020, 63: 841–849

    Article  CAS  Google Scholar 

  12. Yuan X, Ge H, Wang X, Dong C, Dong W, Riaz MS, Xu Z, Zhang J, Huang F. ACS Energy Lett, 2017, 2: 1208–1213

    Article  CAS  Google Scholar 

  13. Liu Q, Wang L, Liu X, Yu P, Tian C, Fu H. Sci China Mater, 2019, 62: 624–632

    Article  CAS  Google Scholar 

  14. Li Y, Li FM, Meng XY, Li SN, Zeng JH, Chen Y. ACS Catal, 2018, 8: 1913–1920

    Article  CAS  Google Scholar 

  15. Shenghai C, Liping S, Fanhao K, Lihua H, Hui Z. J Power Sources, 2019, 430: 25–31

    Article  CAS  Google Scholar 

  16. Wang W, Kuai L, Cao W, Huttula M, Ollikkala S, Ahopelto T, Honkanen AP, Huotari S, Yu M, Geng B. Angew Chem Int Ed, 2017, 56: 14977–14981

    Article  CAS  Google Scholar 

  17. Wang XT, Ouyang T, Wang L, Zhong JH, Ma T, Liu ZQ. Angew Chem Int Ed, 2019, 58: 13291–13296

    Article  CAS  Google Scholar 

  18. Gao X, Zhang H, Li Q, Yu X, Hong Z, Zhang X, Liang C, Lin Z. Angew Chem Int Ed, 2016, 55: 6290–6294

    Article  CAS  Google Scholar 

  19. Chen Z, Zhao H, Zhang J, Xu J. Sci China Mater, 2017, 60: 119–130

    Article  CAS  Google Scholar 

  20. Liu ZQ, Cheng H, Li N, Ma TY, Su YZ. Adv Mater, 2016, 28: 3777–3784

    Article  CAS  PubMed  Google Scholar 

  21. Zhang X, Si C, Guo X, Kong R, Qu F. J Mater Chem A, 2017, 5: 17211–17215

    Article  CAS  Google Scholar 

  22. Hu X, Wang R, Sun P, Xiang Z, Wang X. ACS Sustain Chem Eng, 2019, 7: 19426–19433

    Article  CAS  Google Scholar 

  23. Liu D, Lu Q, Luo Y, Sun X, Asiri AM. Nanoscale, 2015, 7: 15122–15126

    Article  CAS  PubMed  Google Scholar 

  24. Han X, Zhang W, Ma X, Zhong C, Zhao N, Hu W, Deng Y. Adv Mater, 2019, 31: 1808281

    Article  CAS  Google Scholar 

  25. Song G, Wang Z, Sun J, Sun J, Yuan D, Zhang L. Electrochem Commun, 2019, 105: 106487

    Article  CAS  Google Scholar 

  26. Luo H, Lei H, Yuan Y, Liang Y, Qiu Y, Zhu Z, Wang Z. Catalysts, 2019, 9: 459

    Article  CAS  Google Scholar 

  27. Zhang H, Wang X, Yang Z, Yan S, Zhang C, Liu S. ACS Sustain Chem Eng, 2020, 8: 1004–1014

    Article  CAS  Google Scholar 

  28. Cheng H, Li ML, Su CY, Li N, Liu ZQ. Adv Funct Mater, 2017, 27: 1701833

    Article  CAS  Google Scholar 

  29. Wang X, Li Y, Jin T, Meng J, Jiao L, Zhu M, Chen J. Nano Lett, 2017, 17: 7989–7994

    Article  CAS  PubMed  Google Scholar 

  30. Jin W, Chen J, Wu Z, Maduraiveeran G. Int J Hydrogen Energy, 2019, 44: 11421–11430

    Article  CAS  Google Scholar 

  31. Pawar SM, Pawar BS, Babar PT, Ahmed ATA, Chavan HS, Jo Y, Cho S, Kim J, Hou B, Inamdar AI, Cha SN, Kim JH, Kim TG, Kim H, Im H. Appl Surf Sci, 2019, 470: 360–367

    Article  CAS  Google Scholar 

  32. Chauhan M, Reddy KP, Gopinath CS, Deka S. ACS Catal, 2017, 7: 5871–5879

    Article  CAS  Google Scholar 

  33. Kuang M, Han P, Wang Q, Li J, Zheng G. Adv Funct Mater, 2016, 26: 8555–8561

    Article  CAS  Google Scholar 

  34. Zheng J, Chen X, Zhong X, Li S, Liu T, Zhuang G, Li X, Deng S, Mei D, Wang JG. Adv Funct Mater, 2017, 27: 1704169

    Article  CAS  Google Scholar 

  35. Wang J, Li K, Zhang L, Ge B, Liu Y, Yang T, Liu D. Int J Hydrogen Energy, 2017, 42: 3316–3324

    Article  CAS  Google Scholar 

  36. Czioska S, Wang J, Teng X, Chen Z. ACS Sustain Chem Eng, 2018, 6: 11877–11883

    Article  CAS  Google Scholar 

  37. Wang Z, Liu H, Ge R, Ren X, Ren J, Yang D, Zhang L, Sun X. ACS Catal, 2018, 8: 2236–2241

    Article  CAS  Google Scholar 

  38. Zhao Q, Yan Z, Chen C, Chen J. Chem Rev, 2017, 117: 10121–10211

    Article  CAS  PubMed  Google Scholar 

  39. Zhou Y, Sun S, Wei C, Sun Y, Xi P, Feng Z, Xu ZJ. Adv Mater, 2019, 31: 1902509

    Article  CAS  Google Scholar 

  40. Zhou M, Zhang R, Huang M, Lu W, Song S, Melancon MP, Tian M, Liang D, Li C. J Am Chem Soc, 2010, 132: 15351–15358

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Kresse G, Furthmüller J. Phys Rev B, 1996, 54: 11169–11186

    Article  CAS  Google Scholar 

  42. Blöchl PE. Phys Rev B, 1994, 50: 17953–17979

    Article  Google Scholar 

  43. Kresse G, Joubert D. Phys Rev B, 1999, 59: 1758–1775

    Article  CAS  Google Scholar 

  44. Grimme S, Antony J, Ehrlich S, Krieg H. J Chem Phys, 2010, 132: 154104

    Article  PubMed  CAS  Google Scholar 

  45. Liu Y, Ying Y, Fei L, Liu Y, Hu Q, Zhang G, Pang SY, Lu W, Mak CL, Luo X, Zhou L, Wei M, Huang H. J Am Chem Soc, 2019, 141: 8136–8145

    Article  CAS  PubMed  Google Scholar 

  46. Lu Y, Dong CL, Huang YC, Zou Y, Liu Y, Li Y, Zhang N, Chen W, Zhou L, Lin H, Wang S. Sci China Chem, 2020, 63: 980–986

    Article  CAS  Google Scholar 

  47. Shi Y, Ndione PF, Lim LY, Sokaras D, Weng TC, Nagaraja AR, Karydas AG, Perkins JD, Mason TO, Ginley DS, Zunger A, Toney MF. Chem Mater, 2014, 26: 1867–1873

    Article  CAS  Google Scholar 

  48. Li B, Xue H, Pang H, Xu Q. Sci China Chem, 2020, 63: 475–482

    Article  CAS  Google Scholar 

  49. Hao P, Xin Y, Tian J, Li L, Xie J, Lei F, Tong L, Liu H, Tang B. Sci China Chem, 2020, 63: 1030–1039

    Article  CAS  Google Scholar 

  50. Lee M, Oh HS, Cho MK, Ahn JP, Hwang YJ, Min BK. Appl Catal B-Environ, 2018, 233: 130–135

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We acknowledge the support from the National Natural Science Foundation of China (91750112, 51801075) and Postgraduate Research & Practice Innovation Program of Jiangsu Province (KYCX 19_1591). D Rao gratefully acknowledges the support of Jiangsu Overseas Visiting Scholar Program for University Prominent Young and Mid-aged Teachers and Presidents.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Dewei Rao or Xiaohong Yan.

Additional information

Conflict of interest

The authors declare no conflict of interest.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, H., Gao, S., Rao, D. et al. Non-metallic electronic regulation in CuCo oxy-/thio-spinel as advanced oxygen evolution electrocatalysts. Sci. China Chem. 64, 101–108 (2021). https://doi.org/10.1007/s11426-020-9895-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-020-9895-2

Keywords

Navigation