Skip to main content

Advertisement

Log in

Challenges and strategies for ultrafast aqueous zinc-ion batteries

  • Review
  • Published:
Rare Metals Aims and scope Submit manuscript

Abstract

With the rising demand for fast-charging technology in electric vehicles and portable devices, significant efforts have been devoted to the development of the high-rate batteries. Among numerous candidates, rechargeable aqueous zinc-ion batteries (ZIBs) are a promising option due to its high theoretical capacity, low redox potential of zinc metal anode and inherent high ionic conductivity of aqueous electrolyte. As the strong electrostatic interaction between Zn2+ and host generally leads to sluggish electrode kinetics, many strategies have been proposed to enhance fast (dis)charging performance. Herein, we review the state-of-the-art ultrafast aqueous ZIBs and focus on the rational electrode-designing strategies, such as crystal structure engineering, nanostructuring and morphology controlling, conductive materials introducing and organic molecule designing. Recent research directions and future perspectives are also proposed in this review.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Tang Y, Zhang Y, Li W, Ma B, Chen X. Rational material design for ultrafast rechargeable lithium-ion batteries. Chem Soc Rev. 2015;44(17):5926.

    CAS  Google Scholar 

  2. Liu Y, Zhu Y, Cui Y. Challenges and opportunities towards fast-charging battery materials. Nat Energy. 2019;4(7):540.

    Google Scholar 

  3. Liu GY, Zhao YY, Tang YF, Liu XD, Liu M, Wu PJ. In situ sol–gel synthesis of Ti2Nb10O29/C nanoparticles with enhanced pseudocapacitive contribution for a high-rate lithium-ion battery. Rare Met. 2020. https://doi.org/10.1007/s12598-020-01462-w.

    Article  Google Scholar 

  4. Ding GC, Zhu LM, Yang Q, Xie LL, Cao XY, Wang YL, Liu JP, Yang XL. NaV3O8/poly(3,4-ethylenedioxythiophene) composites as high-rate and long-lifespan cathode materials for reversible sodium storage. Rare Met. 2020;39(8):865.

    CAS  Google Scholar 

  5. Dong S, Yu D, Yang J, Jiang L, Wang J, Cheng L, Zhou Y, Yue H, Wang H, Guo L. Tellurium: a high-volumetric-capacity potassium-ion battery electrode material. Adv Mater. 2020;32(23):1908027.

    CAS  Google Scholar 

  6. Zhu GL, Zhao CZ, Huang JQ, He C, Zhang J, Chen S, Xu L, Yuan H, Zhang Q. Fast charging lithium batteries: recent progress and future prospects. Small. 2019;15(15):1805389.

    Google Scholar 

  7. Chen L, Ruan Y, Zhang G, Wei Q, Jiang Y, Xiong T, He P, Yang W, Yan M, An Q, Mai L. Ultrastable and high-performance Zn/VO2 battery based on a reversible single-phase reaction. Chem Mater. 2019;31(3):699.

    CAS  Google Scholar 

  8. Blanc LE, Kundu D, Nazar LF. Scientific challenges for the implementation of Zn-ion batteries. Joule. 2020;4(4):771.

    CAS  Google Scholar 

  9. Li H, Ma L, Han C, Wang Z, Liu Z, Tang Z, Zhi C. Advanced rechargeable zinc-based batteries: recent progress and future perspectives. Nano Energy. 2019;62:550.

    Google Scholar 

  10. Zhu K, Wu T, Huang K. NaCa0.6V6O16·3H2O as an ultra-stable cathode for Zn-ion batteries: the roles of pre-inserted dual-cations and structural water in V3O8 layer. Adv Energy Mater. 2019;9(38):1901968.

    CAS  Google Scholar 

  11. Song M, Tan H, Chao D, Fan HJ. Recent advances in Zn-ion batteries. Adv Funct Mater. 2018;28(41):1802564.

    Google Scholar 

  12. Selvakumaran D, Pan A, Liang S, Cao G. A review on recent developments and challenges of cathode materials for rechargeable aqueous Zn-ion batteries. J Mater Chem A. 2019;7(31):18209.

    CAS  Google Scholar 

  13. Kundu D, Adams BD, Duffort V, Vajargah SH, Nazar LF. A high-capacity and long-life aqueous rechargeable zinc battery using a metal oxide intercalation cathode. Nat Energy. 2016;1:16119.

    CAS  Google Scholar 

  14. Fang G, Zhou J, Pan A, Liang S. Recent advances in aqueous zinc-ion batteries. ACS Energy Lett. 2018;3(10):2480.

    CAS  Google Scholar 

  15. Cheng LW, Liang YH, Zhu QN, Yu DD, Chen MX, Liang JF, Wang H. Bio-inspired isoalloxazine redox moieties for rechargeable aqueous zinc-ion batteries. Chem Asian J. 2020;15(8):1290.

    CAS  Google Scholar 

  16. Zhong C, Liu B, Ding J, Liu X, Zhong Y, Li Y, Sun C, Han X, Deng Y, Zhao N, Hu W. Decoupling electrolytes towards stable and high-energy rechargeable aqueous zinc–manganese dioxide batteries. Nat Energy. 2020;5(6):440.

    CAS  Google Scholar 

  17. Ji B, Yao W, Tang Y. High-performance rechargeable zinc-based dual-ion batteries. Sustain Energy Fuels. 2020;4(1):101.

    CAS  Google Scholar 

  18. Wang H, Wang M, Tang Y. A novel zinc-ion hybrid supercapacitor for long-life and low-cost energy storage applications. Energy Storage Mater. 2018;13:1.

    Google Scholar 

  19. Wang P, Shi X, Wu Z, Guo S, Zhou J, Liang S. Layered hydrated vanadium oxide as highly reversible intercalation cathode for aqueous Zn-ion batteries. Carbon Energy. 2020;2(2):294.

    CAS  Google Scholar 

  20. Li C, Xie X, Liang S, Zhou J. Issues and future perspective on zinc metal anode for rechargeable aqueous zinc-ion batteries. Energy Environ Mater. 2020;3(2):146.

    CAS  Google Scholar 

  21. Soundharrajan V, Sambandam B, Kim S, Alfaruqi MH, Putro DY, Jo J, Kim S, Mathew V, Sun YK, Kim J. Na2V6O16·3H2O barnesite nanorod: an open door to display a stable and high energy for aqueous rechargeable Zn-ion batteries as cathodes. Nano Lett. 2018;18(4):2402.

    CAS  Google Scholar 

  22. Xia C, Guo J, Li P, Zhang X, Alshareef HN. Highly stable aqueous zinc-ion storage using a layered calcium vanadium oxide bronze cathode. Angew Chem Int Ed. 2018;57(15):3943.

    CAS  Google Scholar 

  23. Yang Y, Tang Y, Liang S, Wu Z, Fang G, Cao X, Wang C, Lin T, Pan A, Zhou J. Transition metal ion-preintercalated V2O5 as high-performance aqueous zinc-ion battery cathode with broad temperature adaptability. Nano Energy. 2019;61:617.

    CAS  Google Scholar 

  24. Wang D, Wang L, Liang G, Li H, Liu Z, Tang Z, Liang J, Zhi C. A superior δ-MnO2 cathode and a self-healing Zn–δ–MnO2 battery. ACS Nano. 2019;13(9):10643.

    CAS  Google Scholar 

  25. Liang H, Cao Z, Ming F, Zhang W, Anjum DH, Cui Y, Cavallo L, Alshareef HN. Aqueous zinc-ion storage in MoS2 by tuning the intercalation energy. Nano Lett. 2019;19(5):3199.

    CAS  Google Scholar 

  26. Yan M, He P, Chen Y, Wang S, Wei Q, Zhao K, Xu X, An Q, Shuang Y, Shao Y, Mueller KT, Mai L, Liu J, Yang J. Water-lubricated intercalation in V2O5·nH2O for high-capacity and high-rate aqueous rechargeable zinc batteries. Adv Mater. 2018;30(1):1703725.

    Google Scholar 

  27. Zhu C, Usiskin RE, Yu Y, Maier J. The nanoscale circuitry of battery electrodes. Science. 2017;358(6369):eaao2808.

    Google Scholar 

  28. Zhou W, Chen J, Chen M, Xu X, Tian Q, Xu J, Wong C. Rod-like anhydrous V2O5 assembled by tiny nanosheets as a high-performance cathode material for aqueous zinc-ion batteries. Rsc Adv. 2019;9(52):30556.

    CAS  Google Scholar 

  29. Wang L, Huang K-W, Chen J, Zheng J. Ultralong cycle stability of aqueous zinc-ion batteries with zinc vanadium oxide cathodes. Sci Adv. 2019;5(10):eaax.4279.

    Google Scholar 

  30. Pu X, Song T, Tang L, Tao Y, Cao T, Xu Q, Liu H, Wang Y, Xia Y. Rose-like vanadium disulfide coated by hydrophilic hydroxyvanadium oxide with improved electrochemical performance as cathode material for aqueous zinc-ion batteries. J Power Sour. 2019;437:226917.

    CAS  Google Scholar 

  31. Cheng WZ, Liang JL, Yin HB, Wang YJ, Yan WF, Zhang JN. Bifunctional iron-phtalocyanine metal–organic framework catalyst for ORR, OER and rechargeable zinc–air battery. Rare Met. 2020;39(7):815.

    CAS  Google Scholar 

  32. Qiao MF, Wang Y, Li L, Hu GZ, Zou GA, Mamat X, Dong Y-M, Hu X. Self-templated nitrogen-doped mesoporous carbon decorated with double transition-metal active sites for enhanced oxygen electrode catalysis. Rare Met. 2020;39(7):824.

    CAS  Google Scholar 

  33. Liu WJ, Sun XZ, Zhang X, Li C, Wang K, Wen W, Ma YW. Structural evolution of mesoporous graphene/LiNi1/3Co1/3Mn1/3O2 composite cathode for Li–ion battery. Rare Met. 2020. https://doi.org/10.1007/s12598-020-01406-4.

    Article  Google Scholar 

  34. Wang H, Zhang S, Deng C. In situ encapsulating metal oxides into core-shell hierarchical hybrid fibers for flexible zinc-ion batteries toward high durability and ultrafast capability for wearable applications. ACS Appl Mater Interfaces. 2019;11(39):35796.

    CAS  Google Scholar 

  35. Fu Y, Wei Q, Zhang G, Wang X, Zhang J, Hu Y, Wang D, Zuin L, Zhou T, Wu Y, Sun S. High-performance reversible aqueous Zn-ion battery based on porous MnOx nanorods coated by MOF-derived N-doped carbon. Adv Energy Mater. 2018;8(26):1801445.

    Google Scholar 

  36. Wang X, Ma L, Sun J. Vanadium pentoxide nanosheets in situ spaced with acetylene black as cathodes for high-performance zinc-ion batteries. ACS Appl Mater Interfaces. 2019;11(44):41297.

    CAS  Google Scholar 

  37. Wang H, Yu D, Kuang C, Cheng L, Li W, Feng X, Zhang Z, Zhang X, Zhang Y. Alkali metal anodes for rechargeable batteries. Chemistry. 2019;5(2):313.

    CAS  Google Scholar 

  38. Zhou J, Chen J, Chen M, Wang J, Liu X, Wei B, Wang Z, Li J, Gu L, Zhang Q, Wang H, Guo L. Few-layer bismuthene with anisotropic expansion for high-areal-capacity sodium-ion batteries. Adv Mater. 2019;31(12):1807874.

    Google Scholar 

  39. Li Q, Zhang Q, Liu C, Zhou Z, Li C, He B, Man P, Wang X, Yao Y. Anchoring V2O5 nanosheets on hierarchical titanium nitride nanowire arrays to form core-shell heterostructures as a superior cathode for high-performance wearable aqueous rechargeable zinc-ion batteries. J Mater Chem A. 2019;7(21):12997.

    CAS  Google Scholar 

  40. Liu Y, Zhou X, Liu R, Li X, Bai Y, Xiao H, Wang Y, Yuan G. Tailoring three-dimensional composite architecture for advanced zinc-ion batteries. ACS Appl Mater Interfaces. 2019;11(21):19191.

    CAS  Google Scholar 

  41. Xu D, Wang H, Li F, Guan Z, Wang R, He B, Gong Y, Hu X. Conformal conducting polymer shells on V2O5 nanosheet arrays as a high-rate and stable zinc-ion battery cathode. Adv Mater Interfaces. 2019;6(2):1801506.

    Google Scholar 

  42. Liu S, Chen X, Zhang Q, Zhou J, Cai Z, Pan A. Fabrication of an inexpensive hydrophilic bridge on a carbon substrate and loading vanadium sulfides for flexible aqueous zinc-ion batteries. ACS Appl Mater Interfaces. 2019;11(40):36676.

    CAS  Google Scholar 

  43. Shi HY, Ye YJ, Liu K, Song Y, Sun X. A long-cycle-life self-doped polyaniline cathode for rechargeable aqueous zinc batteries. Angew Chem Int Ed. 2018;57(50):16359.

    CAS  Google Scholar 

  44. Haeupler B, Roessel C, Schwenke AM, Winsberg J, Schmidt D, Wild A, Schubert US. Aqueous zinc-organic polymer battery with a high rate performance and long lifetime. NPG Asia Mater. 2016;8:e283.

    CAS  Google Scholar 

  45. Kim C, Ahn BY, Wei TS, Jo Y, Jeong S, Choi Y, Kim I-D, Lewis JA. High-power aqueous zinc-ion batteries for customized electronic devices. ACS Nano. 2018;12(12):11838.

    CAS  Google Scholar 

  46. Lai J, Tang H, Zhu X, Wang Y. A hydrated NH4V3O8 nanobelt electrode for superior aqueous and quasi-solid-state zinc ion batteries. J Mater Chem A. 2019;7(40):23140.

    CAS  Google Scholar 

  47. Huang J, Zhou J, Liang S. Guest pre-intercalation strategy to boost the electrochemical performance of aqueous zinc-ion battery cathodes. Acta Phys. Chim Sin. 2021;37:2005020.

    Google Scholar 

  48. Teng C, Yang F, Sun M, Yin K, Huang Q, Fu G, Zhang C, Lu X, Jiang J. Structural and defect engineering of cobaltosic oxide nanoarchitectures as an ultrahigh energy density and super durable cathode for Zn-based batteries. Chem Sci. 2019;10(32):7600.

    CAS  Google Scholar 

  49. Ding J, Du Z, Gu L, Li B, Wang L, Wang S, Gong Y, Yang S. Ultrafast Zn2+ intercalation and deintercalation in vanadium dioxide. Adv Mater. 2018;30(26):1800762.

    Google Scholar 

  50. Chen L, Yang Z, Huang Y. Monoclinic VO2(D) hollow nanospheres with super-long cycle life for aqueous zinc ion batteries. Nanoscale. 2019;11(27):13032.

    CAS  Google Scholar 

  51. Wang J, Sun X, Zhao H, Xu L, Xia J, Luo M, Yang Y, Du Y. Superior-performance aqueous zinc ion battery based on structural transformation of MnO2 by rare earth doping. J Phys Chem C. 2019;123(37):22735.

    CAS  Google Scholar 

  52. Ma L, Chen S, Long C, Li X, Zhao Y, Liu Z, Huang Z, Dong B, Zapien JA, Zhi C. Achieving high-voltage and high-capacity aqueous rechargeable zinc ion battery by incorporating two-species redox reaction. Adv Energy Mater. 2019;9(45):1902446.

    CAS  Google Scholar 

  53. Liu F, Chen Z, Fang G, Wang Z, Cai Y, Tang B, Zhou J, Liang S. V2O5 Nanospheres with mixed vanadium valences as high electrochemically active aqueous zinc-ion battery cathode. Nano-Micro Lett. 2019;11(1):25.

    CAS  Google Scholar 

  54. Song H, Liu C, Zhang C, Cao G. Self-doped V4+–V2O5 nanoflake for 2 Li-ion intercalation with enhanced rate and cycling performance. Nano Energy. 2016;22:1.

    Google Scholar 

  55. Nam KW, Kim H, Choi JH, Choi JW. Crystal water for high performance layered manganese oxide cathodes in aqueous rechargeable zinc batteries. Energy Environ Sci. 2019;12(6):1999.

    CAS  Google Scholar 

  56. Ding J, Du Z, Li B, Wang L, Wang S, Gong Y, Yang S. Unlocking the potential of disordered rocksalts for aqueous zinc-ion batteries. Adv Mater. 2019;31(44):1904369.

    CAS  Google Scholar 

  57. Yang W, Dong L, Yang W, Xu C, Shao G, Wang G. 3D oxygen-defective potassium vanadate/carbon nanoribbon networks as high-performance cathodes for aqueous zinc-ion batteries. Small Methods. 2019;4(1):1900670.

    Google Scholar 

  58. Lu Y, Wang J, Zeng S, Zhou L, Xu W, Zheng D, Liu J, Zeng Y, Lu X. An ultrathin defect-rich Co3O4 nanosheet cathode for high-energy and durable aqueous zinc ion batteries. J Mater Chem A. 2019;7(38):21678.

    CAS  Google Scholar 

  59. Wu X, Xiang Y, Peng Q, Wu X, Li Y, Tang F, Song R, Liu Z, He Z, Wu X. Green-low-cost rechargeable aqueous zinc-ion batteries using hollow porous spinel ZnMn2O4 as the cathode material. J Mater Chem A. 2017;5(34):17990.

    CAS  Google Scholar 

  60. Wu M, Liao J, Yu L, Lv R, Li P, Sun W, Tan R, Duan X, Zhang L, Li F, Kim J, Shin KH, Seok Park H, Zhang W, Guo Z, Wang H, Tang Y, Gorgolis G, Galiotis C, Ma J. 2020 roadmap on carbon materials for energy storage and conversion. Chem Asian J. 2020;15(7):995.

    CAS  Google Scholar 

  61. Lu Y, Chen J. Prospects of organic electrode materials for practical lithium batteries. Nat Rev Chem. 2020;4(3):127.

    CAS  Google Scholar 

  62. Lu Y, Zhang Q, Li L, Niu Z, Chen J. Design strategies toward enhancing the performance of organic electrode materials in metal-ion batteries. Chemistry. 2018;4(12):2786.

    CAS  Google Scholar 

  63. Wang H, Yu D, Wang X, Niu Z, Chen M, Cheng L, Zhou W, Guo L. Electrolyte chemistry enables simultaneous stabilization of potassium metal and alloying anode for potassium-ion batteries. Angew Chem Int Ed. 2019;58(46):16451.

    CAS  Google Scholar 

  64. Guo Z, Ma Y, Dong X, Huang J, Wang Y, Xia Y. An environmentally friendly and flexible aqueous zinc battery using an organic cathode. Angew Chem Int Ed. 2018;57(36):11737.

    CAS  Google Scholar 

  65. Chaba N, Neramittagapong S, Neramittagapong A, Eua-Anant N. Morphology study of zinc anode prepared by electroplating method for rechargeable Zn-MnO2 battery. Heliyon. 2019;5(10):e02681.

    Google Scholar 

  66. Koyama A, Fukami K, Suzuki Y, Kitada A, Sakka T, Abe T, Murase K, Kinoshita M. High-rate charging of zinc anodes achieved by tuning hydration properties of zinc complexes in water confined within nanopores. J Phys Chem C. 2016;120(42):24112.

    CAS  Google Scholar 

  67. Yang Q, Liang G, Guo Y, Liu Z, Yan B, Wang D, Huang Z, Li X, Fan J, Zhi C. Do zinc dendrites exist in neutral zinc batteries: a developed electrohealing strategy to in situ rescue in-service batteries. Adv Mater. 2019;31(43):1903778.

    CAS  Google Scholar 

  68. Glatz H, Tervoort E, Kundu D. Unveiling critical insight into the Zn metal anode cyclability in mildly acidic aqueous electrolytes: implications for aqueous zinc batteries. ACS Appl Mater Interfaces. 2020;12(3):3522.

    CAS  Google Scholar 

  69. Zhang N, Cheng F, Liu Y, Zhao Q, Lei K, Chen C, Liu X, Chen J. Cation-deficient spinel ZnMn2O4 cathode in Zn(CF3SO3)2 electrolyte for rechargeable aqueous Zn-ion battery. J Am Chem Soc. 2016;138(39):12894.

    CAS  Google Scholar 

  70. Zhang L, Rodríguez-Pérez IA, Jiang H, Zhang C, Leonard DP, Guo Q, Wang W, Han S, Wang L, Ji X. ZnCl2 “water-in-salt” electrolyte transforms the performance of vanadium oxide as a Zn battery cathode. Adv Funct Mater. 2019;29(30):1902653.

    Google Scholar 

  71. Zhang C, Holoubek J, Wu X, Daniyar A, Zhu L, Chen C, Leonard DP, Rodríguez-Pérez IA, Jiang JX, Fang C, Ji X. A ZnCl2 water-in-salt electrolyte for a reversible Zn metal anode. Chem Commun. 2018;54(100):14097.

    CAS  Google Scholar 

  72. Chen CY, Matsumoto K, Kubota K, Hagiwara R, Xu Q. A room-temperature molten hydrate electrolyte for rechargeable zinc–air batteries. Adv Energy Mater. 2019;9(22):1900196.

    Google Scholar 

  73. Chae MS, Heo JW, Kwak HH, Lee H, Hong ST. Organic electrolyte-based rechargeable zinc-ion batteries using potassium nickel hexacyanoferrate as a cathode material. J Power Sour. 2017;337:204.

    CAS  Google Scholar 

  74. Hinatsu JT, Tran VD, Foulkes FR. Electrical conductivities of aqueous ZnSO4–H2SO4 solutions. J Appl Electrochem. 1992;22(3):215.

    CAS  Google Scholar 

  75. Li H, Han C, Huang Y, Huang Y, Zhu M, Pei Z, Xue Q, Wang Z, Liu Z, Tang Z, Wang Y, Kang F, Li B, Zhi C. An extremely safe and wearable solid-state zinc ion battery based on a hierarchical structured polymer electrolyte. Energy Environ Sci. 2018;11(4):941.

    CAS  Google Scholar 

  76. Lu Y, Zhu T, Xu N, Huang K. A semisolid electrolyte for flexible Zn-ion batteries. ACS Appl Energy Mater. 2019;2(9):6904.

    CAS  Google Scholar 

  77. Hashmi SA. Enhanced zinc ion transport in gel polymer electrolyte: effect of nano-sized ZnO dispersion. J Solid State Electrochem. 2012;16(9):3105.

    Google Scholar 

  78. Han S-D, Rajput NN, Qu X, Pan B, He M, Ferrandon MS, Liao C, Persson KA, Burrell AK. Origin of electrochemical, structural, and transport properties in nonaqueous zinc electrolytes. ACS Appl Mater Interfaces. 2016;8(5):3021.

    CAS  Google Scholar 

  79. Wei T, Li Q, Yang G, Wang C. High-rate and durable aqueous zinc ion battery using dendritic V10O24·12H2O cathode material with large interlamellar spacing. Electrochim Acta. 2018;287:60.

    CAS  Google Scholar 

  80. Zhang Y, Jiang H, Xu L, Gao Z, Meng C. Ammonium vanadium oxide (NH4)2V4O9 sheets for high capacity electrodes in aqueous zinc ion batteries. ACS Appl Energy Mater. 2019;2(11):7861.

    CAS  Google Scholar 

  81. Ma L, Li N, Long C, Dong B, Fang D, Liu Z, Zhao Y, Li X, Fan J, Chen S, Zhang S, Zhi C. Achieving both high voltage and high capacity in aqueous zinc-ion battery for record high energy density. Adv Funct Mater. 2019;29(46):1906142.

    CAS  Google Scholar 

  82. Wei T, Li Q, Yang G, Wang C. Highly reversible and long-life cycling aqueous zinc-ion battery based on ultrathin (NH4)2V10O25·8H2O nanobelts. J Mater Chem A. 2018;6(41):20402.

    CAS  Google Scholar 

  83. Chen S, Zhang Y, Geng H, Yang Y, Rui X, Li CC. Zinc ions pillared vanadate cathodes by chemical pre-intercalation towards long cycling life and low-temperature zinc ion batteries. J Power Sour. 2019;441:227192.

    CAS  Google Scholar 

  84. Liu G, Huang H, Bi R, Xiao X, Ma T, Zhang L. K+ pre-intercalated manganese dioxide with enhanced Zn2+ diffusion for high rate and durable aqueous zinc-ion batteries. J Mater Chem A. 2019;7(36):20806.

    CAS  Google Scholar 

  85. He P, Yan M, Zhang G, Sun R, Chen L, An Q, Mai L. Layered VS2 nanosheet-based aqueous Zn ion battery cathode. Adv Energy Mater. 2017;7(11):1601920.

    Google Scholar 

  86. Ren H, Zhao J, Yang L, Liang Q, Madhavi S, Yan Q. Inverse opal manganese dioxide constructed by few-layered ultrathin nanosheets as high-performance cathodes for aqueous zinc-ion batteries. Nano Res. 2019;12(6):1347.

    CAS  Google Scholar 

  87. Wang X, Ma L, Zhang P, Wang H, Li S, Ji S, Wen Z, Sun J. Vanadium pentoxide nanosheets as cathodes for aqueous zinc-ion batteries with high rate capability and long durability. Appl Surf Sci. 2020;502:144207.

    CAS  Google Scholar 

  88. Wang J, Wang J-G, Liu H, Wei C, Kang F. Zinc ion stabilized MnO2 nanospheres for high capacity and long lifespan aqueous zinc-ion batteries. J Mater Chem A. 2019;7(22):13727.

    CAS  Google Scholar 

  89. Xu G, Liu X, Huang S, Li L, Wei X, Cao J, Yang L, Chu PK. Freestanding, hierarchical, and porous bilayered NaxV2O5·nH2O/rGO/CNT composites as high-performance cathode materials for nonaqueous K-ion batteries and aqueous zinc-ion batteries. ACS Appl Mater Interfaces. 2019;12(1):706.

    Google Scholar 

  90. Yang G, Wei T, Wang C. Self-healing lamellar structure boosts highly stable zinc-storage property of bilayered vanadium oxides. ACS Appl Mater Interfaces. 2018;10(41):35079.

    CAS  Google Scholar 

  91. Yang Y, Tang Y, Fang G, Shan L, Guo J, Zhang W, Wang C, Wang L, Zhou J, Liang S. Li+ intercalated V2O5·nH2O with enlarged layer spacing and fast ion diffusion as an aqueous zinc-ion battery cathode. Energy Environ Sci. 2018;11(11):3157.

    CAS  Google Scholar 

  92. Khayum AM, Ghosh M, Vijayakumar V, Halder A, Nurhuda M, Kumar S, Addicoat M, Kurungot S, Banerjee R. Zinc ion interactions in a two-dimensional covalent organic framework based aqueous zinc ion battery. Chem Sci. 2019;10(38):8889.

    Google Scholar 

  93. Ding Y, Peng Y, Chen S, Zhang X, Li Z, Zhu L, Mo L-E, Hu L. Hierarchical porous metallic V2O3@C for advanced aqueous zinc-ion batteries. ACS Appl Mater Interfaces. 2019;11(47):44109.

    CAS  Google Scholar 

  94. Li S, Chen M, Fang G, Shan L, Cao X, Huang J, Liang S, Zhou J. Synthesis of polycrystalline K0.25V2O5 nanoparticles as cathode for aqueous zinc-ion battery. J Alloys Compd. 2019;801:82.

    CAS  Google Scholar 

  95. Nam KW, Park SS, dos Reis R, Dravid VP, Kim H, Mirkin CA, Stoddart J. Conductive 2D metal-organic framework for high-performance cathodes in aqueous rechargeable zinc batteries. Nat Commun. 2019;10:4948.

    Google Scholar 

  96. Guo S, Fang G, Liang S, Chen M, Wu X, Zhou J. Structural perspective on revealing energy storage behaviors of silver vanadate cathodes in aqueous zinc-ion batteries. Acta Mater. 2019;180:51.

    CAS  Google Scholar 

  97. Tang B, Fang G, Zhou J, Wang L, Lei Y, Wang C, Lin T, Tang Y, Liang S. Potassium vanadates with stable structure and fast ion diffusion channel as cathode for rechargeable aqueous zinc-ion batteries. Nano Energy. 2018;51:579.

    CAS  Google Scholar 

  98. Li Y, Wang S, Salvador JR, Wu J, Liu B, Yang W, Yang J, Zhang W, Liu J, Yang J. Reaction mechanisms for long-life rechargeable Zn/MnO2 batteries. Chem Mater. 2019;31(6):2036.

    CAS  Google Scholar 

  99. Liu H, Wang JG, Sun H, Li Y, Yang J, Wei C, Kang F. Mechanistic investigation of silver vanadate as superior cathode for high rate and durable zinc-ion batteries. J Colloid Interface Sci. 2020;560:659.

    CAS  Google Scholar 

  100. Fang G, Zhu C, Chen M, Zhou J, Tang B, Cao X, Zheng X, Pan A, Liang S. Suppressing manganese dissolution in potassium manganate with rich oxygen defects engaged high-energy-density and durable aqueous zinc-ion battery. Adv Funct Mater. 2019;29(15):1808375.

    Google Scholar 

  101. Zhang Y, Deng S, Luo M, Pan G, Zeng Y, Lu X, Ai C, Liu Q, Xiong Q, Wang X, Xia X, Tu J. Defect promoted capacity and durability of N-MnO2−x branch arrays via low-temperature NH3 treatment for advanced aqueous zinc ion batteries. Small. 2019;15(47):1905452.

    CAS  Google Scholar 

  102. Zeng Y, Lai Z, Han Y, Zhang H, Xie S, Lu X. Oxygen-vacancy and surface modulation of ultrathin nickel cobaltite nanosheets as a high-energy cathode for advanced Zn-ion batteries. Adv Mater. 2018;30(33):1802396.

    Google Scholar 

  103. Hu F, Xie D, Cui F, Zhang D, Song G. Synthesis and electrochemical performance of NaV3O8 nanobelts for Li/Na-ion batteries and aqueous zinc-ion batteries. Rsc Adv. 2019;9(36):20549.

    CAS  Google Scholar 

  104. Shan L, Zhou J, Zhang W, Xia C, Guo S, Ma X, Fang G, Wu X, Liang S. Highly reversible phase transition endows V6O13 with enhanced performance as aqueous zinc-ion battery cathode. Energy Technol. 2019;7(6):1900022.

    Google Scholar 

  105. Jiang L, Wu Z, Wang Y, Tian W, Yi Z, Cai C, Jiang Y, Hu L. Ultrafast zinc-ion diffusion ability observed in 6.0-nanometer spinel nanodots. ACS Nano. 2019;13(9):10376.

    CAS  Google Scholar 

  106. Li R, Yu X, Bian X, Hu F. Preparation and electrochemical performance of VO2(A) hollow spheres as a cathode for aqueous zinc ion batteries. Rsc Adv. 2019;9(60):35117.

    Google Scholar 

  107. Tang B, Zhou J, Fang G, Guo S, Guo X, Shan L, Tang Y, Liang S. Structural modification of V2O5 as high-performance aqueous zinc-ion battery cathode. J Electrochem Soc. 2019;166(4):A480–6.

    CAS  Google Scholar 

  108. Park JS, Jo JH, Aniskevich Y, Bakavets A, Ragoisha G, Streltsov E, Kim J, Myung S-T. Open-structured vanadium dioxide as an intercalation host for Zn ions: investigation by first-principles calculation and experiments. Chem Mater. 2018;30(19):6777.

    CAS  Google Scholar 

  109. Qin H, Chen L, Wang L, Chen X, Yang Z. V2O5 hollow spheres as high rate and long life cathode for aqueous rechargeable zinc ion batteries. Electrochim Acta. 2019;306:307.

    CAS  Google Scholar 

  110. Hu P, Zhu T, Ma J, Cai C, Hu G, Wang X, Liu Z, Zhou L, Mai L. Porous V2O5 microspheres: a high-capacity cathode material for aqueous zinc-ion batteries. Chem Commun. 2019;55(58):8486.

    CAS  Google Scholar 

  111. Qin H, Yang Z, Chen L, Chen X, Wang L. A high-rate aqueous rechargeable zinc ion battery based on the VS4@rGO nanocomposite. J Mater Chem A. 2018;6(46):23757.

    CAS  Google Scholar 

  112. Zhou W, Chen J, He C, Chen M, Xu X, Tian Q, Xu J, Wong CP. Hybridizing δ-type NaxV2O5·nH2O with graphene towards high-performance aqueous zinc-ion batteries. Electrochim Acta. 2019;321:134689.

    CAS  Google Scholar 

  113. Gou L, Xue D, Mou KL, Zhao SP, Wang Y, Fan XY, Li DL. α-MnO2@In2O3 nanotubes as cathode material for aqueous rechargeable Zn-ion battery with high electrochemical performance. J Electrochem Soc. 2019;166(14):A3362.

    CAS  Google Scholar 

  114. Chen L, Yang Z, Qin H, Zeng X, Meng J, Chen H. Graphene-wrapped hollow ZnMn2O4 microspheres for high-performance cathode materials of aqueous zinc ion batteries. Electrochim Acta. 2019;317:155.

    CAS  Google Scholar 

  115. Pang Q, Sun C, Yu Y, Zhao K, Zhang Z, Voyles PM, Chen G, Wei Y, Wang X. H2V3O8 nanowire/graphene electrodes for aqueous rechargeable zinc ion batteries with high rate capability and large capacity. Adv Energy Mater. 2018;8(19):1800144.

    Google Scholar 

  116. Wang C, Zeng Y, Xiao X, Wu S, Zhong G, Xu K, Wei Z, Su W, Lu X. γ-MnO2 nanorods/graphene composite as efficient cathode for advanced rechargeable aqueous zinc-ion battery. J Energy Chem. 2020;43:182.

    Google Scholar 

  117. Wan F, Huang S, Cao H, Niu Z. Freestanding potassium vanadate/carbon nanotube films for ultralong-life aqueous zinc-ion batteries. ACS Nano. 2020;14(6):6752.

    CAS  Google Scholar 

Download references

Acknowledgements

This study was financially supported by the Scientific Research Project of Beijing Municipal Education Commission (No. KM201911417004) and the National Natural Science Foundation of China (Nos. 51822201 and 51972292).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xiao-Yu Liu or Hua Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, QN., Wang, ZY., Wang, JW. et al. Challenges and strategies for ultrafast aqueous zinc-ion batteries. Rare Met. 40, 309–328 (2021). https://doi.org/10.1007/s12598-020-01588-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12598-020-01588-x

Keywords

Navigation