Skip to main content
Log in

Highly Heat-Resistant Polymeric Coatings of Optical Fibers

  • Published:
Polymer Science, Series C Aims and scope Submit manuscript

Abstract—

The current state of the art in the field of highly heat-resistant optical fiber coatings based on polyimides and polyamides is reviewed. Various methods of coating formation, including those from poly(amic acid) precursors, organosoluble polyimides, and aliphatic and aromatic polyamides, are considered, and their properties and applications are described. It is demonstrated that organosoluble polyimides and polyamides show promise as protective coatings of optical fibers that withstand prolonged exposure to moisture and high temperatures (350°C up to 24 h) without the loss of strength by the optical fibers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

REFERENCES

  1. E. M. Dianov, Quantum Electron. 30, 639 (2000).

    Article  Google Scholar 

  2. E. M. Dianov, Quantum Electron. 40, 1 (2010).

    Article  CAS  Google Scholar 

  3. H. H. Diamandi, Y. London, G. Bashan, and A. Zadok, APL Photonics 4 (1), 016105 (2019).

    Article  Google Scholar 

  4. Y. Antman, A. Clain, Y. London, and A. Zadok, Optica 3, 510 (2016).

    Article  CAS  Google Scholar 

  5. M. T. Alt, A. Mittnacht, and T. Stieglitz, in Proceedings of 40 Annual International Conference “IEEE Engineering in Medicine and Biology Society (EMBC’18)”, Honolulu, USA,2018 (Honolulu, 2018), p. 4595.

  6. T. Reinsch, J. Henninges, and R. Ásmundsson, Environ. Earth Sci. 70, 3465 (2013).

    Article  CAS  Google Scholar 

  7. Y. Lin, Y. Gong, Y. Wu, and H. Wu, Photonic Sensors 5, 60 (2014).

    Article  Google Scholar 

  8. H.-E. Joe, H. Yun, S.-H. Jo, M. B. G. Jun, and B.‑K. Min, Int. J. Precis. Eng. Manuf.-Green Technol. 5, 173 (2018).

    Google Scholar 

  9. X. F. Huang, D. R. Sheng, K. F. Cen, and H. Zhou, Sens. Actuators, B 127, 518 (2007).

    Article  CAS  Google Scholar 

  10. J. Chai, Q. Liu, J. Liu, and D. Zhang, Opt. Fiber Technol. 41, 40 (2018).

    Article  CAS  Google Scholar 

  11. G. Pickrell, E. Udd, H. H. Du, and B. G. Risch, in Proceedings of SPIE “Fiber Optic Sensors and Applications XII”, Baltimore, USA, 2015 (USA, Baltimore, 2015), Vol. 9480, p. 948001.

    Google Scholar 

  12. K. Satori, K. Fukuchi, Y. Kurosawa, A. Hongo, and N. Takeda, in Proceeding of SPIE “Smart Structures and Materials 2001: Sensory Phenomena and Measurement Instrumentation for Smart Structures and Materials”, Newport Beach, USA,2001 (Newport Beach, 2001), Vol. 4328, p. 285.

  13. T. Liu, S. Jiang, R. Landgraf, Z. Peng, L. Wang, H. Yan, in Proceedings of SPIE “Advanced Sensor Systems and Applications VII”, Beijing, China, 2016 (Bejing, 2016), Vol. 10025, p. 1002519.

    Google Scholar 

  14. A. Franzen and K.-M. Jääskeläinen, US Patent No. 20100025048 (2010).

  15. S. Minakuchi, T. Sanada, N. Takeda, S. Mitani, T. Mizutani, Y. Sasaki, and K. Shinozaki, J. Lightwave Technol. 33, 2658 (2015).

    Article  CAS  Google Scholar 

  16. G. Berruti, M. Consales, M. Giordano, L. Sansone, P. Petagna, S. Buontempo, G. Breglio, and A. Cusano, Sens. Actuators, B 177, 94 (2013).

    Article  CAS  Google Scholar 

  17. A. A. Stolov, B. E. Slyman, D. A. Simoff, A. S. Hokansson, R. S. Allen, and J. P. Earnhardt, in Proceedings of SPIE “Design and Quality for Biomedical Technologies V”, San Francisco, USA, 2012 (San Francisco, 2012), Vol. 8215, p. 82150B.

    Google Scholar 

  18. A. A. Stolov, A. S. Hokansson, J. Li, M. F. Yan, W. P. Smith, J. Kim, and I. Gannot, in Proceedings of SPIE Optical Fibers and Sensors for Medical Diagnostics and Treatment Applications XIX, San Francisco, USA,2019 (San Francisco, 2019), Vol. 10872, p. 108720B.

  19. I. Gannot, L. Huang, R. S. Dyer, R. J. Lago, A. A. Stolov, and J. Li, in Proceedings of SPIE “Optical Fibers and Sensors for Medical Diagnostics and Treatment Applications XVI”, San Francisco, USA, 2016 (San Francisco, 2016), Vol. 9702, p. 97020Y.

    Google Scholar 

  20. A. A. Stolov, E. T. Warych, W. P. Smith, P. L. Fournier, A. S. Hokansson, J. Li, and R. S. Allen, in Proceedings of SPIE “Optical Fibers and Sensors for Medical Diagnostics and Treatment Applications XIV”, San Francisco, USA, 2014 (San Francisco, 2014), Vol. 8938, p. 893806.

    Google Scholar 

  21. M. M. Bubnov, Doctoral Dissertation in Mathematics and Physics (Nauchnyi tsentr volokonnoi optiki RAN, Moscow, 2009).

  22. E. A. Lindholm, J. Li, A. Hokansson, B. Slyman, and D. Burgess, in Proceedings of SPIE “Reliability of Optical Fiber Components, Devices, Systems, and Networks II”, Strasbourg, France, 2004 (Strasbourg, 2004), Vol. 5465, p. 25.

    Google Scholar 

  23. A. A. Abramov, V. A. Bogatyrev, G. Yu. Borkina, M. M. Bubnov, N. N. Vechkanov, A. S. Konov, A. Yu. Laptev, A. Yu. Makarenko, V. N. Myakov, S. D. Rumyantsev, S. L. Semenov, B. B. Troitskii, I. V. Filimonov, and A. G. Shchebunyaev, Akad. Nauk SSSR, Inst. Obshch. Fiz., Tr. 15, 98 (1988).

  24. N. Yoshizawa, M. Ohnishi, O. Kawata, K. Ishihara, and Y. Negishi, J. Lightwave Technol. 3, 779 (1985).

    Article  Google Scholar 

  25. A. A. Stolov, D. A. Simoff, and J. Li, J. Lightwave Technol. 26, 3443 (2008).

    Article  Google Scholar 

  26. E. Murphy, P. Shah, J. Kelly, and T. Anderson, Wire Cable Technol. Int. 38 (4), 40 (2010).

    Google Scholar 

  27. K. Sohma and T. Hattori, Sci.-Tech. Rev., No. 74, 60 (2012).

  28. T. E. Clark, S. Chang, S. Kwak, and J. H. Oh, in Proceedings of SPIE “Optical Fibers and Sensors for Medical Diagnostics and Treatment Applications XII”, San Francisco, USA, 2012 (San Francisco, 2012), Vol. 8218, p. 82180U.

    Google Scholar 

  29. D. R. Biswas, Opt. Eng. 30, 772 (1991).

    Article  CAS  Google Scholar 

  30. M. B. Cain, R. Kannabiran, and E. H. Urruti, EP Patent No. 0354289 (1990).

  31. K. W. Bennett and J. Koh, EP Patent No. 2539293 (2015).

  32. M. Shimizu, Y. Kubo, T. Hattori, and K. Tsuneishi, US Patent No. 6711335 (2004).

  33. B. J. Overton, F. Gooijer, and G. Krabshuis, in Proceedings of 61 International Wire and Cable Symposium, Providence, USA,2012 (Providence, 2012), p. 321.

  34. S. Semjonov, D. A. Sapozhnikov, D. Y. Erin, O. N. Zabegaeva, I. A. Kushtavkina, K. N. Nishchev, Y. S. Vygodskii, and E. M. Dianov, Quantum Electron. 45, 330 (2015).

    Article  CAS  Google Scholar 

  35. D. D. Ngo, P. J. Cahill, and J. J. Greczek, US Patent No. 5504830 (1996).

  36. L. J. Vacha, WO Patent No. 1997036837 (1997).

  37. Y. Zhang, L. Qu, J. Liu, X. Wu, Y. Zhang, R. Zhang, H. Qi, and X. Zhang, J. Coat. Technol. Res. 16, 511 (2019).

    Article  CAS  Google Scholar 

  38. B. Overton and C. Taylor, Polym. Eng. Sci. 29, 1169 (1989).

    Article  CAS  Google Scholar 

  39. M. Cain, R. Kannabiran, and E. Urruti, EU Patent No. 0354289 (1990).

  40. G. Drenzek and D. Bolte, US Patent No. 20050135763 (2005).

  41. J. W. Pettit, US Patent No. 8218930 (2012).

  42. Y. S. Vygodskii, S. L. Semenov, D. A. Sapozhnikov, N. A. Popova, and B. A. Bayminov, RF Patent No. 2610503 (2015).

  43. A. T. Haldeman, J. R. DiMaio, M. Shaughnessy, T. Duniho, and B. Sawders, in Proceedings of IEEE Avionics, Fiber-Optics and Photonics Technology Conference (AVFOP), Atlanta, USA,2014 (Atlanta, 2014), p. 83.

  44. A. T. Haldeman, M. Shaughnessy, K. Berger, B. Morgan, J. Shetzline, and J. R. DiMaio, in Proceedings of Materials for Energy, Efficiency and Sustainability: “TechConnect Briefs, 2018”, National Harbor, USA,2015 (National Harbor, 2015), p. 89.

  45. A. T. Haldeman, T. L. Duniho, B. P. Morgan, M. Shaughnessy, K. A. Berger, and J. R. DiMaio, US Patent No. 20180037700 (2018).

  46. D. A. Sapozhnikov, B. A. Bayminov, O. N. Zabegaeva, D. D. Alexeeva, S. L. Semjonov, A. F. Kosolapov, E. A. Plastinin, M. I. Buzin, and Y. S. Vygodskii, High Perform. Polym. 29, 663 (2017).

    Article  CAS  Google Scholar 

  47. A. Kosolapov, E. Plastinin, S. Semjonov, B. Bayminov, D. Sapozhnikov, D. Alekseeva, and Y. S. Vygodskii, Bull. Lebedev Phys. Inst. 44, 159 (2017).

    Article  Google Scholar 

  48. D. A. Sapozhnikov, B. A. Bayminov, A. V. Chuchalov, S. L. Semenov, A. F. Kosolapov, O. N. Zabegaeva, and Y. S. Vygodskii, Polym. Sci., Ser. B 62, 39 (2020).

    Article  CAS  Google Scholar 

  49. Y. S. Vygodskii, D. A. Sapozhnikov, B. A. Bayminov, S. L. Semjonov, A. F. Kosolapov, and E. A. Plastinin, Prog. Org. Coat. 99, 210 (2016).

    Article  CAS  Google Scholar 

  50. S. K. Siddhamalli, US Patent No. 6411403 (2002).

  51. D. Reed, G. Condrey, and M. Messer, US Patent No. 7848604 (2010).

  52. J.-P. Bonicel, O. Tatat, A. Lavenne, J. Hennink, A. G. W. Berkers, and J. W. Jonker, WO Patent No. 2016046586 (2019).

  53. S. Bertram, G. Stöppelmann, and A. Sturzel, DE Patent No. 102004045775 (2004).

  54. W. Gruber, US Patent No. 4578284 (1986).

  55. O. Kouji, JPN Patent No. 11241018 (1998).

  56. I. Ryoichi and M. Kaoru, JPN Patent No. 59188603 (1983).

  57. A. Shu and K. Takeshi, JPN Patent No. 2005084096 (2005).

  58. T. Kimura, Y. Tsukamoto, and K. Asano, WO Patent No. 2014148609 (2014).

  59. S. Okada, K. Takeda, and T. Tanaka, JPN Patent No. 5477144 (1977).

  60. S. Aoyanagi and T. Kitayama, JPN Patent No. 2003227975 (2002).

  61. R. Ansel and H. Estates, US Patent No. 4682851 (1987).

  62. I. Nobuaki and T. Kurome, JPN Patent No. 02280106 (1989).

  63. Y. Akatsuka, S. Moteki, and M. Uchida, JPN Patent No. 2010004611 (2010).

  64. R. M. Bryce, H. T. Nguyen, P. Nakeeran, T. Clement, C. J. Haugen, R. R. Tykwinski, R. G. De Corby, and J. N. McMullin, Thin Solid Films 458, 233 (2004).

    Article  CAS  Google Scholar 

  65. D. A. Sapozhnikov, B. A. Bayminov, N. A. Popova, O. N. Zabegaeva, D. D. Alekseyeva, S. L. Semjonov, A. F. Kosolapov, E. A. Plastinin, and Y. S. Vygodskii, Macromol. Symp. 375, 1700028 (2017).

    Article  Google Scholar 

  66. Y. S. Vygodskii, S. L. Semenov, D. A. Sapozhnikov, N. A. Popova, B. A. Bayminov, A. F. Kosolapov, and E. A. Plastinin, RF Patent No. 2644891 (2016).

Download references

Funding

This work was supported by the Russian Foundation for Basic Research (project no. 18-29-17035 mk) and the Ministry of Science and Higher Education of the Russian Federation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ya. S. Vygodskii.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sapozhnikov, D.A., Baiminov, B.A. & Vygodskii, Y.S. Highly Heat-Resistant Polymeric Coatings of Optical Fibers . Polym. Sci. Ser. C 62, 165–171 (2020). https://doi.org/10.1134/S1811238220020137

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1811238220020137

Navigation