Skip to main content
Log in

The Effect of the Stabilization and Carbonization Temperatures on the Properties of Microporous Carbon Nanofiber Cathodes for Fuel Cells on Polybenzimidazole Membrane

  • Published:
Polymer Science, Series C Aims and scope Submit manuscript

Abstract

Materials based on pyrolyzed electrospun nanofiber polyacrylonitrile were studied by the method of standard contact porosimetry. An influence of oxidation and pyrolysis temperatures on specific surface area. It was shown that an increase of oxidation temperature from 300 to 350°C and of pyrolysis temperature from 900 to 1000°C leads to a decrease of pore specific surface area and to a decrease of a part of micropore specific surface area. Platinated samples showed sufficient values of electrochemically active platinum surface area (12‒35 m2 g\(_{{{\text{Pt}}}}^{{ - 1}}\)) and were tested as cathodes for high temperature polymer electrolyte membrane fuel cell. An increase in power density was found when a part of electrode micropore specific surface area was decreasing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. J. Zhang, PEM Fuel Cell Electrocatalyst and Catalyst Layers (Springer, London, 2008).

    Book  Google Scholar 

  2. Q. Li, D. Aili, H. A. Hjuler, and J. O. Jensen, High Temperature Polymer Electrolyte Membrane Fuel Cells, Approaches, Status and Perspectives (Springer, Cham; Heidelberg; New York; Dordrecht; London, 2016).

    Book  Google Scholar 

  3. Y. Wang, K. S. Chen, J. Mishler, S. C. Cho, and X. C. Adroher, Appl. Energy 88, 981 (2011).

    Article  CAS  Google Scholar 

  4. R. Borup, J. Meyers, B. Pivovar, Y. S. Kim, R. Mukundan, N. Garland, D. Myers, M. Wilson, F. Garzon, D. Wood, P. Zelenay, K. More, K. Stroh, T. Zawodzinski, J. Boncella, J. E. McGrath, M. Inaba, K. Miyatake, M. Hori, K. Ota, Z. Ogumi, S. Miyata, A. Nishukata, Z. Siroma, Y. Uchimoto, K. Yasuda, K. Kimijima, and N. Iwashita, Chem. Rev. 107, 3904 (2007).

    Article  CAS  PubMed  Google Scholar 

  5. T. Myles, L. Bonville, and R. Maric, Catalysts 7, 16 (2017).

    Article  CAS  Google Scholar 

  6. S. S. Araya, F. Zhou, V. Liso, S. L. Sahlin, J. R. Vang, S. Thomas, X. Gao, C. Jeppesen, and S. K. Kaer, Int. J. Hydrogen Energy 41, 21310 (2016).

    Article  CAS  Google Scholar 

  7. M. K. Debe, Nature 486, 43 (2012).

    Article  CAS  PubMed  Google Scholar 

  8. A. Chandan, M. Hattenberger, A. El-kharouf, S. Du, A. Dhir, V. Self, B. G. Pollet, A. Ingram, and W. Bujalski, J. Power Sources 231, 264 (2013).

    Article  CAS  Google Scholar 

  9. R. Zeis, Beilstein J. Nanotechnol. 6, 68 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. B. C. Steele and A. Heinzel, Nature 414, 345 (2001).

    Article  CAS  PubMed  Google Scholar 

  11. A. Arsalis, Renewable Sustainable Energy Rev. 105, 391 (2019).

    Article  Google Scholar 

  12. H. Zamora, J. Plaza, P. Canizares, J. Lobato, M. A. Rodrigo, ChemSusChem 9, 1187 (2016).

    Article  CAS  PubMed  Google Scholar 

  13. X. X. Wang, Z. H. Tan, M. Zeng, and J. N. Wang, Sci. Rep. 4, 4437 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Y. Jeon, J.-I. Park, J. Ok, A. Dorjgotov, H.-J. Kim, H. Kim, C. Lee, S. Park, and Y.-G. Shul, Int. J. Hydrogen Energy 41, 6864 (2016).

    Article  CAS  Google Scholar 

  15. S. Chan, J. Jankovic, D. Susac, M. S. Saha, M. Tam, H. Yang, and F. Ko, J. Mater. Sci. 53, 11633 (2018).

    Article  CAS  Google Scholar 

  16. M. Inagaki, Y. Yang, and F. Kang, Adv. Mater. 24, 2547 (2012).

    Article  CAS  PubMed  Google Scholar 

  17. T. Kh. Tenchurin, S. N. Krasheninnikov, A. S. Orekhov, S. N. Chvalun, A. D. Shepelev, S. I. Belousov, and A. I. Gulyaev, Fibre Chem. 46, 151 (2014).

    Article  CAS  Google Scholar 

  18. M. Kopec, M. Lamson, R. Yuan, C. Tang, M. Kruk, M. Zhong, K. Matyjaszewski, and T. Kowalewski, Prog. Polym. Sci. 92, 89 (2019).

    Article  CAS  Google Scholar 

  19. Z. Dong, S. J. Kennedy, and Y. Wu, J. Power Sources 196, 4886 (2011).

    Article  CAS  Google Scholar 

  20. N. Yusof and A. F. Ismail, J. Anal. Appl. Pyrolysis 93, 1 (2012).

    Article  CAS  Google Scholar 

  21. B. Zhang, F. Kang, J.-M. Tarascon, and J.-K. Kim, Prog. Mater. Sci 76, 319 (2016).

    Article  CAS  Google Scholar 

  22. I. I. Ponomarev, K. M. Skupov, D. Yu. Razorenov, V. G. Zhigalina, O. M. Zhigalina, Iv. I. Ponomarev, Yu. A. Volkova, M. S. Kondratenko, S. S. Bukalov, and E. S. Davydova, Russ. J. Electrochem. 52, 735 (2016).

    Article  CAS  Google Scholar 

  23. V. G. Zhigalina, O. M. Zhigalina, I. I. Ponomarev, K. M. Skupov, D. Y. Razorenov, I. I. Ponomarev, N. A. Kiselev, and G. Leitinger, Cryst. Eng. Commun. 19, 3792 (2017).

    Article  CAS  Google Scholar 

  24. K. M. Skupov, I. I. Ponomarev, D. Yu. Razorenov, V. G. Zhigalina, O. M. Zhigalina, Iv. I. Ponomarev, Yu. A. Volkova, Yu. M. Volfkovich, and V. E. Sosenkin, Russ. J. Electrochem. 53, 728 (2017).

    Article  CAS  Google Scholar 

  25. K. M. Skupov, I. I. Ponomarev, D. Y. Razorenov, V. G. Zhigalina, O. M. Zhigalina, I. I. Ponomarev, Y. A. Volkova, Y. M. Volfkovich, and V. E. Sosenkin, Macromol. Symp. 375, 1600188 (2017).

    Article  CAS  Google Scholar 

  26. I. I. Ponomarev, K. M. Skupov, Iv. I. Ponomarev, D. Yu. Razorenov, Yu. A. Volkova, V. G. Basu, O. M. Zhigalina, S. S. Bukalov, Yu. M. Volfkovich, and V. E. Sosenkin, Russ. J. Electrochem. 55, 552 (2019).

    Article  CAS  Google Scholar 

  27. I. I. Ponomarev, K. M. Skupov, A. V. Naumkin, V. G. Basu, O. M. Zhigalina, D. Y. Razorenov, Iv. I. Ponomarev, and Yu. A. Volkova, RSC Adv. 9, 257 (2019).

    Article  CAS  Google Scholar 

  28. M. S. Kondratenko, I. I. Ponomarev, M. O. Gallyamov, D. Y. Razorenov, Y. A. Volkova, E. P. Kharitonova, and A. R. Khokhlov, Beilstein J. Nanotechnol. 4, 481 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Y. M. Vol’fkovich, Iv. I. Ponomarev, V. E. Sosenkin, I. I. Ponomarev, K. M. Skupov, D. Y. Razorenov, Prot. Met. Phys. Chem. Surf. 55, 195 (2019).

    Article  Google Scholar 

  30. Z.-X. Low, P. M. Budd, N. B. McKeown, and D. A. Patterson, Chem. Rev. 118, 5871 (2018).

    Article  CAS  PubMed  Google Scholar 

  31. N. B. McKeown, Sci. China: Chem. 60, 1023 (2017).

    Article  CAS  Google Scholar 

  32. Yu. M. Volfkovich, A. V. Sakars, and A. A. Volinsky, Int. J. Nanotechnol. 2, 292 (2005).

    Article  CAS  Google Scholar 

  33. Yu. M. Volfkovich, A. N. Filippov, and V. S. Bagotsky, Structural Properties of Porous Materials and Powders Used in Different Fields of Science and Technology (Springer, London, 2014).

    Book  Google Scholar 

  34. J. Rouquerol, G. Baron, R. Denoyel, H. Giesche, J. Groen, P. Klobes, P. Levitz, A. V. Neimark, S. Rigby, R. Skudas, K. Sing, M. Thommes, and K. Unger, Pure Appl. Chem. 84, 107 (2011).

    Article  CAS  Google Scholar 

  35. B. E. Conway and H. Angerstein-Kozlowska, Acc. Chem. Res. 14, 49 (1981).

    Article  CAS  Google Scholar 

  36. T. J. Schmidt and J. Baurmeister, J. Power Sources 176, 428 (2008).

    Article  CAS  Google Scholar 

  37. W. Vielstich, H. A. Gasteiger, and H. Yokokawa, in Handbook of Fuel Cells, Fundamentals, Technology and Applications (Wiley, Chichester, 2009), Vol. 5.

    Google Scholar 

  38. I. Shiota and O. Watanabe, J. Mater. Sci. 14, 1121 (1979).

    Article  CAS  Google Scholar 

  39. A. Lasia, “Electrochemical Impedance Spectroscopy and Its Applications,” in Modern Aspects of Electrochemistry, Ed. by B. E. Conway, J. Bockris, and R. E. White (Kluwer Academic/Plenum Publ., New York, 1999).

  40. T. Pajkossy and R. Jurczakowski, Curr. Opin. Electrochem. 1, 53 (2017).

    Article  CAS  Google Scholar 

  41. K. M. Skupov, J. Hobbs, and J. P. Claverie, Prog. Org. Coat. 65, 314 (2009).

    Article  CAS  Google Scholar 

  42. S. M. R. Niya and M. Hoorfar, J. Power Sources 240, 281 (2013).

    Article  CAS  Google Scholar 

  43. J. Halter, T. Gloor, B. Amoroso, T. J. Schmidt, and F. N. Buchi, Phys. Chem. Chem. Phys. 21, 13126 (2019).

    Article  CAS  PubMed  Google Scholar 

Download references

ACKNOWLEDGMENTS

Elemental Analysis was performed with support of Ministry of Science and Higher Education of the Russian Federation using the equipment of Center for molecular composition studies of INEOS RAS.

Funding

This study was supported by a grant from the Russian Science Foundation (project no. 18-13-00421).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. M. Skupov.

Additional information

Translated by E. Boltukhina

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Skupov, K.M., Ponomarev, I.I., Vol’fkovich, Y.M. et al. The Effect of the Stabilization and Carbonization Temperatures on the Properties of Microporous Carbon Nanofiber Cathodes for Fuel Cells on Polybenzimidazole Membrane. Polym. Sci. Ser. C 62, 231–237 (2020). https://doi.org/10.1134/S1811238220020149

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1811238220020149

Navigation