Skip to main content

Advertisement

Log in

Molybdenum supply increases root system growth of winter wheat by enhancing nitric oxide accumulation and expression of NRT genes

  • Regular Article
  • Published:
Plant and Soil Aims and scope Submit manuscript

Abstract

Aims

Increasing evidence shows that root system growth is strongly affected by different nitrogen (N) signals and the available N source in the rhizosphere. Molybdenum (Mo), an essential trace element, plays a key role in N assimilation and metabolism. However, Mo efficacy may vary with different N sources. The present experiment was performed to examine the Mo role on root system growth in winter wheat under different N sources.

Methods

A hydroponic experiment was conducted consisting of two winter wheat cultivars; Mo-efficient (97003) and Mo-inefficient (97014) under two Mo levels (0 and 1 μM) and three N sources (NO3, NH4NO3 or NH4+).

Results

The results showed that Mo supply increased root dry weight and other morphological traits, nitrate reductase (NR) activities, nitric oxide (NO) contents, total N concentration and the expressions of nitrate transporter (NRT) genes under various N sources, however, such effects were in the order of NH4NO3 > NO3 > NH4+, suggesting that Mo fertilizer shows more complementary effects towards NO3 form of N than sole NH4+ in winter wheat.

Conclusions

These findings imply that Mo plays a significant role in increasing the root system growth of wheat through NO production, efficient N uptake and assimilation, and regulation of NRT gene expressions, especially under NH4NO3 nutrition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

Mo:

Molybdenum

N:

Nitrogen

NO3 -N:

Nitrate

NH4 +-N:

Ammonium

NH4NO3 :

Ammonium nitrate

NO:

Nitric oxide

NRT :

Nitrate transporters

NR:

Nitrate reductase

References

  • Babenko ON, Brychkova G, Sagi M, Alikulov ZA (2015) Molybdenum application enhances adaptation of crested wheatgrass to salinity stress. Acta Physiol Plant 37(2):14

    Article  CAS  Google Scholar 

  • Balotf S, Kavoosi G, Kholdebarin B (2016) Nitrate reductase, nitrite reductase, glutamine synthetase, and glutamate synthase expression and activity in response to different nitrogen sources in nitrogen-starved wheat seedlings. Biotechnol Appl Biochem 63(2):220–229

    Article  CAS  PubMed  Google Scholar 

  • Barbano DM, Clark JL (1990) Kjeldahl method for determination of total nitrogen content of milk: collaborative study. J Assoc Off Anal Chem 73(6):849–859

    CAS  Google Scholar 

  • Calonego JC, Ramos Junior EU, Barbosa RD, Leite GHP, Grassi Filho H (2010) Nitrogen topdressing fertilization on common bean with leaf spray of molybdenum. Rev Ciênc Agron 41(3):334–340

    Article  Google Scholar 

  • Campbell W (2001) Structure and function of eukaryotic NAD (P) H: nitrate reductase. Cell Mol Life Sci 58(2):194–204

    Article  CAS  PubMed  Google Scholar 

  • Cataldo D, Maroon M, Schrader L, Youngs V (1975) Rapid colorimetric determination of nitrate in plant tissue by nitration of salicylic acid 1. Commun Soil Sci Plant Anal 6(1):71–80

    Article  CAS  Google Scholar 

  • Chamizo-Ampudia A, Sanz-Luque E, Llamas A, Galvan A, Fernandez E (2017) Nitrate Reductase regulates plant nitric oxide homeostasis. Trends Plant Sci 22(2):163–174

    Article  CAS  PubMed  Google Scholar 

  • Coudert Y, Périn C, Courtois B, Khong NG, Gantet P (2010) Genetic control of root development in rice, the model cereal. Trends Plant Sci 15(4):219–226

    Article  CAS  PubMed  Google Scholar 

  • De DS, Forster B, Pagès L, Price A, Tuberosa R, Draye X (2007) Root system architecture: opportunities and constraints for genetic improvement of crops. Trends Plant Sci 12(10):474–481

    Article  CAS  Google Scholar 

  • Den HG, Van IG, Beeckman T, De SI (2010) The roots of a new green revolution. Trends Plant Sci 15(11):600–607

    Article  CAS  Google Scholar 

  • Ding Y, Feng R, Wang R, Guo J, Zheng X (2014) A dual effect of se on cd toxicity: evidence from plant growth, root morphology and responses of the antioxidative systems of paddy rice. Plant Soil 375(1–2):289–301

    Article  CAS  Google Scholar 

  • Domínguez-Valdivia MD, Aparicio-Tejo PM, Lamsfus C, Cruz C, Martins-Loução MA, Moran JF (2008) Nitrogen nutrition and antioxidant metabolism in ammonium-tolerant and-sensitive plants. Physiol Plant 132(3):359–369

    Article  CAS  PubMed  Google Scholar 

  • Dorlodot SD, Forster B, Pagès L, Price A, Tuberosa R, Draye X (2007) Root system architecture: opportunities and constraints for genetic improvement of crops. Trends Plant Sci 12(10):474–481

    Article  PubMed  CAS  Google Scholar 

  • Esteban R, Ariz I, Cruz C, Moran JF (2016) Mechanisms of ammonium toxicity and the quest for tolerance. Plant Sci 248:92–101

    Article  CAS  PubMed  Google Scholar 

  • Fang XZ, Tian WH, Liu XX, Lin XY, Jin CW, Zheng SJ (2016) Alleviation of proton toxicity by nitrate uptake specifically depends on nitrate transporter 1.1 in Arabidopsis. New Phytol 211(1):149–158

    Article  CAS  PubMed  Google Scholar 

  • Farnese FS, Menezessilva PE, Gusman GS, Oliveira JA (2016) When bad guys become good ones: the key role of reactive oxygen species and nitric oxide in the plant responses to abiotic stress. Front Plant Sci 7(273):471

    PubMed  PubMed Central  Google Scholar 

  • Garnett T, Conn V, Kaiser BN (2009) Root based approaches to improving nitrogen use efficiency in plants. Plant Cell Environ 32(9):1272–1283

    Article  CAS  PubMed  Google Scholar 

  • Gewin V (2010) Food: an underground revolution. Nature 466(7306):552–553

    Article  CAS  PubMed  Google Scholar 

  • Gifford ML, Alexis D, Gutierrez RA, Coruzzi GM, Birnbaum KD (2008) Cell-specific nitrogen responses mediate developmental plasticity. Proc Natl Acad Sci U S A 105(2):803–808

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guo F-Q, Young J, Crawford NM (2003) The nitrate transporter AtNRT1. 1 (CHL1) functions in stomatal opening and contributes to drought susceptibility in Arabidopsis. Plant Cell 15(1):107–117

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hänsch R, Mendel RR (2009) Physiological functions of mineral micronutrients (cu, Zn, Mn, Fe, Ni, Mo, B, cl). Curr Opin Plant Biol 12(3):259–266

    Article  PubMed  CAS  Google Scholar 

  • Imran M, Hu C, Hussain S, Rana MS, Riaz M, Afzal J, Aziz O, Elyamine AM, Ismael MAF, Sun X (2019a) Molybdenum-induced effects on photosynthetic efficacy of winter wheat (Triticum aestivum L.) under different nitrogen sources are associated with nitrogen assimilation. Plant Physiol Biochem 141:154–163

    Article  CAS  PubMed  Google Scholar 

  • Imran M, Sun X, Hussain S, Ali U, Rana MS, Rasul F, Saleem MH, Moussa MG, Bhantana P, Afzal J (2019b) Molybdenum-induced effects on nitrogen metabolism enzymes and elemental profile of winter wheat (Triticum aestivum L.) under different nitrogen sources. Int J Mol Sci 20(12):3009

    Article  CAS  PubMed Central  Google Scholar 

  • Imran M, Sun X, Hussain S, Ali U, Rana MS, Rasul F, Shaukat S, Hu C (2020) Molybdenum application regulates oxidative stress tolerance in winter wheat under different nitrogen sources. J Soil Sci Plant Nutr:1–11

  • Iqbal M, Raja NI, Yasmeen F, Hussain M, Ejaz M, Shah M (2017) Impacts of heat stress on wheat: a critical review. Adv Crop Sci Technol 5(1):01–09

    Article  CAS  Google Scholar 

  • Jiang S, Sun J, Tian Z, Hu H, Michel EJS, Gao J, Jiang D, Cao W, Dai T (2017) Root extension and nitrate transporter up-regulation induced by nitrogen deficiency improves nitrogen status and plant growth at the seedling stage of winter wheat ( Triticum aestivum L.). Environ Exp Bot 141:28–40

    Article  CAS  Google Scholar 

  • Jiao K, Jin W, Metzner H (1992) Determination of molybdenum in soils and plants using the polarographic adsorptive complex catalytic wave of Mo (VI)-cupferron. Anal Chim Acta 260(1):35–43

    Article  CAS  Google Scholar 

  • Kaiser BN, Gridley KL, Brady JN, Phillips T, Tyerman SD (2005) The role of molybdenum in agricultural plant production. Ann Bot 96(5):745–754

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kiba T, Kudo T, Kojima M, Sakakibara H (2011) Hormonal control of nitrogen acquisition: roles of auxin, abscisic acid, and cytokinin. J Exp Bot 62(4):1399–1409

    Article  CAS  PubMed  Google Scholar 

  • Kovács B, Puskás-Preszner A, Huzsvai L, Lévai L, Bódi É (2015) Effect of molybdenum treatment on molybdenum concentration and nitrate reduction in maize seedlings. Plant Physiol Biochem 96:38–44

    Article  PubMed  CAS  Google Scholar 

  • Laugier E, Bouguyon E, Mauriès A, Tillard P, Gojon A, Lejay L (2012) Regulation of high-affinity nitrate uptake in roots of Arabidopsis depends predominantly on posttranscriptional control of the NRT2.1/NAR2.1 transport system. Plant Physiol 158(2):1067–1078

    Article  CAS  PubMed  Google Scholar 

  • Li Q, Li BH, Kronzucker HJ, Shi WM (2010) Root growth inhibition by NH(4)(+) in Arabidopsis is mediated by the root tip and is linked to NH(4)(+) efflux and GMPase activity. Plant Cell Environ 33(9):1529–1542

    CAS  PubMed  Google Scholar 

  • Li B, Li G, Kronzucker HJ, Baluška F, Shi W (2014) Ammonium stress in Arabidopsis: signaling, genetic loci, and physiological targets. Trends Plant Sci 19(2):107–114

    Article  CAS  PubMed  Google Scholar 

  • Lima JE, Kojima S, Takahashi H, von Wirén N (2010) Ammonium triggers lateral root branching in Arabidopsis in an AMMONIUM TRANSPORTER1; 3-dependent manner. Plant Cell 22(11):3621–3633

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu M, Liu XX, He XL, Liu LJ, Wu H, Tang CX, Zhang YS, Jin CW (2017) Ethylene and nitric oxide interact to regulate the magnesium deficiency-induced root hair development in Arabidopsis. New Phytol 213(3):1242–1256

    Article  PubMed  CAS  Google Scholar 

  • Manoli A, Begheldo M, Genre A, Lanfranco L, Trevisan S, Quaggiotti S (2014) NO homeostasis is a key regulator of early nitrate perception and root elongation in maize. J Exp Bot 65(1):185–200

    Article  CAS  PubMed  Google Scholar 

  • Molins-Legua C, Meseguer-Lloret S, Moliner-Martinez Y, Campíns-Falcó P (2006) A guide for selecting the most appropriate method for ammonium determination in water analysis. TrAC Trends Anal Chem 25(3):282–290

    Article  CAS  Google Scholar 

  • Narayanan S, Mohan A, Gill KS, Prasad PV (2014) Variability of root traits in spring wheat germplasm. PLoS One 9(6):e100317

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Peng L, Yu Y (1999) Effect of molybdenum and boron on nitrogen metabolism of soybean. Plant Natrit Fertil 5(4):347–351

    Google Scholar 

  • Pfaffl MW (2001) A new mathematical model for relative quantification in real-time RT–PCR. Nucleic Acids Res 29(9):e45–e45

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rana MS, Hu CX, Shaaban M, Imran M, Afzal J, Moussa MG, Elyamine AM, Bhantana P, Saleem MH, Syaifudin M (2020a) Soil phosphorus transformation characteristics in response to molybdenum supply in leguminous crops. J Environ Manag 268:110610

    Article  CAS  Google Scholar 

  • Rana MS, Sun X, Imran M, Ali S, Shaaban M, Moussa MG, Khan Z, Afzal J, Binyamin R, Bhantana P (2020b) Molybdenum-induced effects on leaf ultra-structure and rhizosphere phosphorus transformation in Triticum aestivum L. Plant Physiol Biochem 153:20–29

    Article  CAS  PubMed  Google Scholar 

  • Remans T, Nacry P, Pervent M, Filleur S, Diatloff E, Mounier E, Tillard P, Forde BG, Gojon A (2006) The Arabidopsis NRT1.1 transporter participates in the signaling pathway triggering root colonization of nitrate-rich patches. Proc Natl Acad Sci U S A 103(50):19206–19211

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rogato A, D'Apuzzo E, Barbulova A, Omrane S, Parlati A, Carfagna S, Costa A, Lo Schiavo F, Esposito S, Chiurazzi M (2010) Characterization of a developmental root response caused by external ammonium supply in Lotus japonicus. Plant Physiol 154(12):784–795

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sun X, Hu C, Tan Q, Liu J, Liu H (2009) Effects of molybdenum on expression of cold-responsive genes in abscisic acid (ABA)-dependent and ABA-independent pathways in winter wheat under low-temperature stress. Ann Bot 104(2):345–356

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sun X, Hu C, Tan Q, Liu J, Liu H (2010) Endogenous hormone in response to molybdenum in winter wheat roots under low temperature stress. J Food Agri Environ 8(3/4 part 1):597–601

  • Sun C, Lu L, Liu L, Liu W, Yu Y, Liu X, Hu Y, Jin C, Lin X (2014) Nitrate reductase-mediated early nitric oxide burst alleviates oxidative damage induced by aluminum through enhancement of antioxidant defenses in roots of wheat (Triticum aestivum). New Phytol 201(4):1240–1250

    Article  CAS  PubMed  Google Scholar 

  • Sun H, Li J, Song W, Tao J, Huang S, Chen S, Hou M, Xu G, Zhang Y (2015) Nitric oxide generated by nitrate reductase increases nitrogen uptake capacity by inducing lateral root formation and inorganic nitrogen uptake under partial nitrate nutrition in rice. J Exp Bot 66(9):2449–2459

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sun H, Bi Y, Tao J, Huang S, Hou M, Xue R, Liang Z, Gu P, Yoneyama K, Xie X (2016) Strigolactones are required for nitric oxide to induce root elongation in response to nitrogen and phosphate deficiencies in rice. Plant Cell Environ 39(7):1473–1484

    Article  CAS  PubMed  Google Scholar 

  • Uga Y, Sugimoto K, Ogawa S, Rane J, Ishitani M, Hara N, Kitomi Y, Inukai Y, Ono K, Kanno N (2013) Control of root system architecture by DEEPER ROOTING 1 increases rice yield under drought conditions. Nat Genet 45(9):1097–1102

    Article  CAS  PubMed  Google Scholar 

  • Wang BL, Tang XY, Cheng LY, Zhang AZ, Zhang WH, Zhang FS, Liu JQ, Cao Y, Allan DL, Vance CP (2010) Nitric oxide is involved in phosphorus deficiency-induced cluster-root development and citrate exudation in white lupin. New Phytol 187(4):1112–1123

    Article  CAS  PubMed  Google Scholar 

  • Wang YY, Hsu PK, Tsay YF (2012) Uptake, allocation and signaling of nitrate. Trends Plant Sci 17(8):458–467

    Article  CAS  PubMed  Google Scholar 

  • Wendehenne D, Hancock JT, Wendehenne D, Hancock JT (2011) Preface: plant science special issue: new frontiers in nitric oxide biology in plants. Plant Sci 181:507–508

    Article  PubMed  Google Scholar 

  • Wu S, Hu C, Tan Q, Nie Z, Sun X (2014) Effects of molybdenum on water utilization, antioxidative defense system and osmotic-adjustment ability in winter wheat (Triticum aestivum) under drought stress. Plant Physiol Biochem 83:365–374

    Article  CAS  PubMed  Google Scholar 

  • Wu S, Hu C, Tan Q, Xu S, Sun X (2017) Nitric oxide mediates molybdenum-induced antioxidant defense in wheat under drought stress. Front Plant Sci 8:1085

    Article  PubMed  PubMed Central  Google Scholar 

  • Wu S, Hu C, Tan Q, Zhao X, Xu S, Xia Y, Sun X (2018) Nitric oxide acts downstream of abscisic acid in molybdenum-induced oxidative tolerance in wheat. Plant Cell Rep 37(4):599–610

    Article  CAS  PubMed  Google Scholar 

  • Yu M, Hu C-X, Wang Y-H (2002) Molybdenum efficiency in winter wheat cultivars as related to molybdenum uptake and distribution. Plant Soil 245(2):287–293

    Article  CAS  Google Scholar 

  • Yuan HM, Huang X (2016) Inhibition of root meristem growth by cadmium involves nitric oxide-mediated repression of auxin accumulation and signalling in Arabidopsis. Plant Cell Environ 39(1):120–135

    Article  CAS  PubMed  Google Scholar 

  • Zou N, Li B, Dong G, Kronzucker HJ, Shi W (2012) Ammonium-induced loss of root gravitropism is related to auxin distribution and TRH1 function, and is uncoupled from the inhibition of root elongation in Arabidopsis. J Exp Bot 63(10):3777–3788

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Key Research and Development Program of China (2016YFD0200108), the National Natural Science Foundation of China (Program No. 41771329) and the 948 Project from the Ministry of Agriculture of China (2016-X41).

Author information

Authors and Affiliations

Authors

Contributions

Muhammad Imran: Conceived and designed the experiment, wrote the manuscript; Xuecheng Sun and Chengxiao Hu: Project administration, funding and visualization. Muhammad Hamzah Saleem, Muhammad Shoaib Rana and Muhammad Riaz: conducted the experiment and helped in replacing nutrient solution; Xiangru Tang and Imran Khan: Formal analysis, data analysis; Saddam Hussain and Xuecheng Sun: Provided statistical guidance, review, editing and drafted the manuscript.

Corresponding author

Correspondence to Chengxiao Hu.

Ethics declarations

Conflict of interest

The authors have no conflict of interest to declare.

Additional information

Responsible Editor: Richard J. Simpson.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

ESM 1

(DOCX 232 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Imran, M., Sun, X., Hussain, S. et al. Molybdenum supply increases root system growth of winter wheat by enhancing nitric oxide accumulation and expression of NRT genes. Plant Soil 459, 235–248 (2021). https://doi.org/10.1007/s11104-020-04765-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11104-020-04765-0

Keywords

Navigation