Skip to main content
Log in

Martensitic Transformation and Magnetic Transport Properties in Ni50Mn37Sn13 Alloy

  • ELECTRICAL AND MAGNETIC PROPERTIES
  • Published:
Physics of Metals and Metallography Aims and scope Submit manuscript

Abstract—This work is devoted to the investigation of the structure, electrical and magnetic properties of the Ni50Mn37Sn13 alloy in which the temperature of martensitic transformation is close to room temperature and virtually coincides with the Curie temperature of the austenite. The martensitic transformation in the Ni50Mn37Sn13 alloy is accompanied by the formation of modulated martensite. It is found that the spontaneous transformation from martensite to austenite is accompanied by a decrease in the electrical resistivity by approximately 41%. Upon the martensitic transformation induced by magnetic field of a strength of 18 kOe, negative magnetoresistance of up to –28% is observed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. T. Krenke, E. Duman, M. Acet, E. F. Wassermann, X. Moya, L. Mañosa, and A. Planes, “Inverse magnetocaloric effect in ferromagnetic Ni–Mn–Sn alloys,” Nat. Mater. 4, 450–454 (2005).

    Article  CAS  Google Scholar 

  2. H. C. Xuan, K. X. Xie, D. H. Wang, Z. D. Han, C. L. Zhang, B. X. Gu, and Y. W. Du, “Effect of annealing on the martensitic transformation and magnetocaloric effect in Ni44.1Mn44.2Sn11.7 ribbons,” Appl. Phys. Lett. 92, 242506 (2008).

    Article  Google Scholar 

  3. B. Hernando, J. L. S. Llamazares, J. D. Santos, L. I. Escoda, J. J. Suñol, R. Varga, D. Baldomir, and D. Serantes, “Thermal and magnetic field-induced martensite-austenite transition in Ni50.3Mn35.3Sn14.4 ribbons,” Appl. Phys. Lett. 92, 042 504 (2008).

    Article  Google Scholar 

  4. J. D. Santos, T. Sanchez, P. Alvarez, M. L. Sanchez, J. L. S. Llamazares, B. Hernando, L. Escoda, J. J. Suñol, and R. Varga, “Microstructure and magnetic properties of Ni50Mn37Sn13 Heusler alloy ribbons,” J. Appl. Phys. 103, 07B326 (2008).

  5. R. Coll, L. Escoda, J. Saurina, J. L. Sánchez-Llamazares, B. Hernando, and J. J. Sunõl, “Martensitic transformation in Mn–Ni–Sn Heusler alloys,” J. Therm. Anal. Calorim. 99, 905–909 (2010).

    Article  CAS  Google Scholar 

  6. H. X. Zheng, W. Wang, S. C. Xue, Q. J. Zhai, J. Frenzel, and Z. P. Luo, “Composition-dependent crystal structure and martensitic transformation in Heusler Ni–Mn–Sn alloys,” Acta Mater. 61, 4648–4656 (2013).

    Article  CAS  Google Scholar 

  7. F. S. Liu, Q. B. Wang, S. P. Li, W. Q. Ao, and J. Q. Li, “The martensitic transition and magnetocaloric properties of Ni51Mn49 – xSnx,” Phys. B 412, 74–78 (2013).

    Article  CAS  Google Scholar 

  8. R. Caballero-Flores, L. Gonzalez-Legarreta, W. O. Rosa, T. Sanchez, V. M. Prida, Ll. Escoda, J. J. Sunol, A. B. Batdalov, A. M. Aliev, V. V. Koledov, V. G. Shavrov, and B. Hernando, “Magnetocaloric effect, magnetostructural and magnetic phase transformations in Ni50.3Mn36.5Sn13.2 Heusler alloy ribbons,” J. Alloys Compd. 629, 332–342 (2015).

    Article  CAS  Google Scholar 

  9. A. N. Vasil’ev, V. D. Buchel’nikov, T. Takagi, V. V. Khovailo, and E. I. Estrin, “Shape memory ferromagnets,” Phys.-Usp. 46, 559–588 (2003).

    Article  Google Scholar 

  10. V. D. Buchelnikov, A. N. Vasiliev, V. V. Koledov, V. V. Khovaylo, S. V. Taskaev, and V. G. Shavrov, “Magnetic shape-memory alloys: Phase transitions and functional properties,” Phys.-Usp. 49, 871–878 (2006).

    Article  CAS  Google Scholar 

  11. V. M. Schastlivtsev, Yu. V. Kaletina, and E. A. Fokina, Martensitic Transformation in Magnetic Field (UrO RAN, Ekaterinburg, 2007) [in Russian].

    Google Scholar 

  12. Y. Sutou, Y. Imano, N. Koeda, T. Omori, R. Kainuma, K. Ishida, and K. Oikawa, “Magnetic and martensitic transformations of NiMnX (X = In, Sn, Sb) ferromagnetic shape memory alloys,” Appl. Phys. Lett. 85, No. 9, 4358–4360 (2004).

    Article  CAS  Google Scholar 

  13. T. Krenke, M. Acet, E. F. Wassermann, X. Moya, L. Manosa, and A. Planes, “Martensitic transformations and nature of ferromagnetism in the austenitic and martensitic states of Ni–Mn–Sn alloys,” Phys. Rev. B 72, 014 412 (2005).

    Article  Google Scholar 

  14. P. J. Brown, A. P. Gandy, K. Ishida, R. Kainuma, T. Kanomata, K. U. Neumann, K. Oikata, B. Ouladdiaf, and K. R. A. Ziebeck, “The magnetic and structural properties of the magnetic shape memory compound Ni2Mn1.44Sn0.56,” J. Phys.: Condens. Matter 18, 2249 (2006).

    CAS  Google Scholar 

  15. K. Koyama, K. Watanabe, T. Kanomata, R. Kainuma, K. Oikawa, K. Ishida, “Observation of field-induced reverse transformation in ferromagnetic shape memory alloy Ni50Mn36Sn14,” Appl. Phys. Lett. 88, 132 505 (2006).

    Article  Google Scholar 

  16. V. Khovaylo, V. Koledov, V. Shavrov, M. Ohtsuka, H. Miki, T. Takagi, and V. Novosad, “Influence of Co on phase transitions in Ni50Mn37Sn13,” Mater. Sci. Eng., A 481–482, 322–325 (2008).

    Article  Google Scholar 

  17. R. Caballero-Flores, L. Gonzalez-Legarreta, W. O. Rosa, T. Sanchez, V. M. Prida, Ll. Escoda, J. J. Sunol, A. B. Batdalov, A. M. Aliev, V. V. Koledov, V. G. Shavrov, and B. Hernando, “Magnetocaloric effect, magnetostructural and magnetic phase transformations in Ni50.3Mn36.5Sn13.2 Heusler alloy ribbons,” J. Alloys Comp. 629, 332–342 (2015).

    Article  CAS  Google Scholar 

  18. J. D. Santos, T. Sanchez, P. Alvarez, M. L. Sanchez, J. L. Sánchez Llamazares, B. Hernando, Ll. Escoda, J. J. Suñol, and R. Varga, “Microstructure and magnetic properties of Ni50Mn37Sn13 Heusler alloy ribbons,” Appl. Phys. 103, 07B326 (2008).

  19. V. D. Buchelnikov and V. V. Sokolovskiy, “Magnetocaloric effect in Ni–Mn–X (X = Ga, In, Sn, Sb) Heusler alloys,” Phys. Met. Metallogr. 112, 633–665 (2011).

    Article  Google Scholar 

  20. V. M. Schastlivtsev, Yu. V. Kaletina, E. A. Fokina, and V. A. Kazantsev, “Martensitic and magnetic transformations in Ni–Mn–In alloys,” Phys. Met. Metallogr. 112, 61–71 (2011).

    Article  Google Scholar 

  21. Yu. V. Kaletina, V. M. Schastlivtsev, A. V. Korolev, and E. A. Fokina, “Phase transformations in Ni–Mn–In-based alloys in magnetic field,” Phys. Met. Metallogr. 113, 1029–1034 (2012).

    Article  Google Scholar 

  22. Yu. V. Kaletina, E. G. Gerasimov, V. M. Schastlivtsev, E. A. Fokina, and P. B. Terent’ev, “Magnetic-field-induced martensitic transformations in Ni47 – xMn42 + xIn11 alloys (with 0 ≤ x ≤ 2),” Phys. Met. Metallogr. 114, 838–844 (2013).

    Article  Google Scholar 

  23. Yu. V. Kaletina, E. G. Gerasimov, V. M. Schastlivtsev, V. S. Gaviko, and P. B. Terent’ev, “Structural and magnetic transformations in Ni51 − xMn36 + xSn13 alloys,” Phys. Solid State 57, 381–385 (2015).

    Article  CAS  Google Scholar 

  24. Yu. V. Kaletina, I. G. Kabanova, N. Yu. Frolova, V. M. Gundyrev, and A. Yu. Kaletin, “ Crystallographic specific features of the martensitic structure of Ni47Mn42In11 alloy,” Phys. Solid State 59, 2008–2015 (2017).

    Article  CAS  Google Scholar 

Download references

Funding

The work was carried out within the state assignment of Ministry of Science and Higher Education of the Russian Federation (theme “Structure” АААА-А18-118020190116-6) and was partially funded by RFBR (project No. 20-03-00056).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu. V. Kaletina.

Additional information

Translated by O. Golovnya

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kaletina, Y.V., Gerasimov, E.G., Terentev, P.B. et al. Martensitic Transformation and Magnetic Transport Properties in Ni50Mn37Sn13 Alloy. Phys. Metals Metallogr. 121, 894–898 (2020). https://doi.org/10.1134/S0031918X20090069

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0031918X20090069

Keywords:

Navigation