Skip to main content
Log in

Peculiarities of Magnetic and Magnetocaloric Properties of Fe–Rh Alloys in the Range of Antiferromagnet–Ferromagnet Transition

  • ELECTRICAL AND MAGNETIC PROPERTIES
  • Published:
Physics of Metals and Metallography Aims and scope Submit manuscript

Abstract—The present work surveys literature data related to the study of iron–rhodium-based (Fe–Rh) alloys. The crystal, magnetic, and electronic properties of the FeRh alloy and FeRh-based materials in the form of both bulk, thin-film, and nano-structured objects are considered. Peculiarities of the first-order antiferromagnet–ferromagnet transition are analyzed, and various explanations of its nature are discussed. Different approaches to the preparation of the iron–rhodium-based alloys are reported; an analysis of the effect of heat treatment conditions on the properties of the material and their reproducibility in measuring the magnetocaloric properties is performed. Causes for the record values of the magnetocaloric effect (MCE) observed for the material are shown, and prospects of the application of this alloy in magnetic refrigeration technology, medicine, electronics, and magnetic data recording technology are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.
Fig. 13.
Fig. 14.
Fig. 15.
Fig. 16.
Fig. 17.
Fig. 18.
Fig. 19.
Fig. 20.
Fig. 21.
Fig. 22.
Fig. 23.
Fig. 24.
Fig. 25.

Similar content being viewed by others

REFERENCES

  1. M. Fallot, Ann. Phys. (Paris, Fr.) 10, 291 (1938).

  2. S. O. Mariager, F. Pressacco, G. Ingold, A. Caviezel, E. Mohr-Vorobeva, P. Beaud, S. L. Johnson, C. J. Milne, E. Mancini, S. Moyerman, et al., “Structural and magnetic dynamics of a laser induced phase transition in FeRh,” Phys. Rev. Lett. 108, 087 201 (2012). https://doi.org/10.1103/PhysRevLett.108.087201

    Article  CAS  Google Scholar 

  3. A. X. Gray, D. W. Cooke, P. Krüger, C. Bordel, A. M. Kaiser, S. Moyerman, E. E. Fullerton, S. Ueda, Y. Yamashita, A. Gloskovskii, et al., “Electronic structure changes across the metamagnetic transition in FeRh via hard X-ray photoemission,” Phys. Rev. Lett. 108, 257 208 (2012). https://doi.org/10.1103/PhysRevLett.108.257208

    Article  CAS  Google Scholar 

  4. D. W. Cooke, F. Hellman, C. Baldasseroni, C. Bordel, S. Moyerman, and E. E. Fullerton, “Thermodynamic measurements of Fe–Rh alloys,” Phys. Rev. Lett. 109, 255 901 (2012). https://doi.org/10.1103/PhysRevLett.109.255901

    Article  CAS  Google Scholar 

  5. P. M. Derlet, “Landau–Heisenberg Hamiltonian model for FeRh,” Phys. Rev. B 85, 174 431 (2012). https://doi.org/10.1103/PhysRevB.85.174431

    Article  CAS  Google Scholar 

  6. M. A. Vries, M. Loving, A. P. Mihai, L. H. Lewis, D. Heiman, and C. H. Marrows, “Hall-effect characterization of the metamagnetic transition in FeRh,” New J. Phys. 15, 013 008 (2013). https://doi.org/10.1088/1367-2630/15/1/013008

    Article  CAS  Google Scholar 

  7. J. B. Staunton, R. Banerjee, M. Dias, A. Deak, and L. Szunyogh, “Fluctuating local moments, itinerant electrons, and the magnetocaloric effect: Compositional hypersensitivity of FeRh,” Phys. Rev. B 89, 054 427 (2014). https://doi.org/10.1103/PhysRevB.89.054427

    Article  CAS  Google Scholar 

  8. J.-U. Thiele, S. Maat, and E. E. Fullerton, “FeRh/FePt exchange spring films for thermally assisted magnetic recording media,” Appl. Phys. Lett. 82, 2859–2861 (2003). https://doi.org/10.1063/1.1571232

    Article  CAS  Google Scholar 

  9. A. M. Tishin, J. A. Rochev, and A. V. Gorelov, RU Patent No. 2 373 957 C2 (13 October 2016).

  10. A. M. Tishin, J. A. Rochev, and A. V. Gorelov, UK Patent No. GB 2 458 229 (25 May 2011).

  11. A. M. Tishin, J. A. Rochev, and A. V. Gorelov, WO Patent No. 2008/044963 (17 April 2008).

  12. V. K. Pecharsky and K. A. Gschneidner, “Giant magnetocaloric effect in Gd5Si2Ge2,” Phys. Rev. Lett. 78, 4494–4497 (1997). https://doi.org/10.1103/PhysRevLett.78.4494

    Article  CAS  Google Scholar 

  13. S. Fujieda, A. Fujita, and K. Fukamichi, “Large magnetocaloric effect in La(FexSi1 − x)13 itinerant-electron metamagnetic compounds,” Appl. Phys. Lett. 81, 1276–1278 (2002). https://doi.org/10.1063/1.1498148

    Article  CAS  Google Scholar 

  14. O. Tegus, E. Brück, K. H. J. Buschow, and F. R. de Boer, “Transition-metal-based magnetic refrigerants for room-temperature applications,” Nature 415, 150–152 (2002). https://doi.org/10.1038/415150a

    Article  CAS  Google Scholar 

  15. S. A. Nikitin, G. Myalikgulyev, A. M. Tishin, M. P. Annaorazov, K. A. Asatryan, and A. L. Tyurin, “The magnetocaloric effect in Fe49Rh51 compound,” Phys. Lett. A 148, 363–366 (1990).

    Article  CAS  Google Scholar 

  16. M. P. Annaorazov, K. A. Asatryan, G. Myalikgulyev, S. A. Nikitin, A. M. Tishin, and A. L. Tyurin, “Alloys of the Fe–Rh system as a new class of working material for magnetic refrigerators,” Cryogenics 32, 867–872 (1992). https://doi.org/10.1016/0011-2275(92)90352-B

    Article  CAS  Google Scholar 

  17. S. A. Nikitin, M. P. Annaorazov, V. Yu. Bodriakov, and A. L. Tyurin, “Giant anomalies of the Young’s modulus and internal friction of FeRh alloy above the AFM–FM transition point,” Phys. Lett. A 176, 275–278 (1993). https://doi.org/10.1016/0375-9601(93)91050-F

    Article  CAS  Google Scholar 

  18. S. A. Nikitin, G. Myalikgulyev, M. P. Annaorazov, A. L. Tyurin, R. W. Myndyev, and S. A. Akopyan, “Giant elastocaloric effect in FeRh alloy,” Phys. Lett. A 171, 234–236 (1992). https://doi.org/10.1016/0375-9601(92)90432-L

    Article  CAS  Google Scholar 

  19. V. Franco, J. S. Bl’azquez, B. Ingale, and A. Conde, “The magnetocaloric effect and magnetic refrigeration near room temperature: Materials and models,” Ann. Rev. Mater. Res. 42, 305–342 (2012). https://doi.org/10.1146/annurev-matsci-062910-100356

    Article  CAS  Google Scholar 

  20. K. Nishimura, Y. Nakazawa, L. Li, and K. Mori, “Magnetocaloric effect of Fe(Rh1 − xPdx) alloys,” Mater. Trans. 49, 1753–1756 (2008). https://doi.org/10.2320/matertrans.MRA2008080

    Article  CAS  Google Scholar 

  21. M. Manekar and S. B. Roy, “Very large refrigerant capacity at room temperature with reproducible magnetocaloric effect in Fe 0.975 Ni 0.025 Rh,” J. Phys. D: Appl. Phys. 44, 242001 (2011). https://doi.org/10.1088/0022-3727/44/24/242001

    Article  CAS  Google Scholar 

  22. R. Barua, F. Jiménez–Villacorta, and L. H. Lewis, “Towards tailoring the magnetocaloric response in FeRh-based ternary compounds,” J. Appl. Phys. 115, 17A903 (2014). https://doi.org/10.1063/1.4854975

  23. M. Fallot and R. Horcart, Rev. Sci. 77, 498 (1939).

    Google Scholar 

  24. J. S. Kouvel, “Unusual nature of the abrupt magnetic transition in FeRh and its pseudobinary variants,” J. Appl. Phys. 37, 1257–1258 (1966). https://doi.org/10.1063/1.1708424

    Article  CAS  Google Scholar 

  25. A. I. Zakharov, A. M. Kadomtseva, R. Z. Levitin, and E. G. Ponyatovskii, Soviet Physics – JETP 19, 1348 (1964).

    Google Scholar 

  26. L. Muldawer and F. deBergevin, “Antiferromagnetic-ferromagnetic transformation in FeRh,” J. Chem. Phys. 35, 1904–1905 (1961). https://doi.org/10.1063/1.1732175

    Article  CAS  Google Scholar 

  27. M. J. Jiménez, A. B. Schvval, and G. F. Cabeza, “Ab initio study of FeRh alloy properties,” Comput. Mater. Sci. 172, 109 385 (2020). https://doi.org/10.1016/j.commatsci.2019.109385

    Article  CAS  Google Scholar 

  28. E. Kren, L. Pal, and P. Szabo, “Neutron diffraction investigation of the antiferromagnetic-ferromagnetic transformation in the FeRh alloy,” Phys. Lett. 9, 297–298 (1964). https://doi.org/10.1016/0031-9163(64)90369-5

    Article  CAS  Google Scholar 

  29. F. de Bergevin and L. Muldawer, C. R. Hebd. Seances Acad. Sci. 253, 1347 (1961).

    Google Scholar 

  30. Y. Feng, T. Fukuda, and T. Kakeshita “Temperature memory effect associated with a first order magnetic transition in FeRh,” Intermetallics 36, 57–60 (2013). https://doi.org/10.1016/j.intermet.2012.12.021

    Article  CAS  Google Scholar 

  31. G. Shirane, C. W. Chen, P. A. Flinn, and R. J. Nathans, J. Appl. Phys. 34, 1044 (1963).

    Article  CAS  Google Scholar 

  32. E. F. Bertaut, A. Delapalme, F. Forrat, G. Roult, F. D. Bergevin, and R. Pauthenet, “Magnetic structure work at the Nuclear Center of Grenoble.” J. Appl. Phys. 33, 1123–1124 (1962). https://doi.org/10.1063/1.1728627

    Article  CAS  Google Scholar 

  33. G. Shirane, C. W. Chen, and R. Nathans, Phys. Rev. 134, A1547 (1964).

    Article  CAS  Google Scholar 

  34. N. Kunitomi, M. Kohgi, and Y. Nakai, “Diffuse scattering of neutrons in the antiferromagnetic phase of FeRh,” Phys. Lett. A 37, 333–334 (1971). https://doi.org/10.1016/0375-9601(71)90695-5

    Article  CAS  Google Scholar 

  35. Cs. Hargitai, “On the aligned magnetic moment of the Rh atoms in the FeRh alloy,” Phys. Lett. 17, 178–179 (1965). https://doi.org/10.1016/0031-9163(65)90467-1

    Article  CAS  Google Scholar 

  36. V. L. Moruzzi, P. M. Marcus, and S. L. Qiu, “Oscillatory magnetism in compounds of iron with 4d metals,” Phys. Rev. B 52, 3448–3452 (1995). https://doi.org/10.1103/PhysRevB.52.3448

    Article  CAS  Google Scholar 

  37. J. S. Kouvel and C. C. Hartelius, “Anomalous magnetic moments and transformations in the ordered alloy FeRh,” J. Appl. Phys. 33, 1343–1344 (1962). https://doi.org/10.1063/1.1728721

    Article  CAS  Google Scholar 

  38. M. E. Gruner, E. Hoffmann, and P. Entel, “Instability of the rhodium magnetic moment as the origin of the metamagnetic phase transition in α-FeRh,” Phys. Rev. B 67, 064 415 (2003). https://doi.org/10.1103/PhysRevB.67.064415

    Article  CAS  Google Scholar 

  39. N. A. Zarkevich and D. D. Johnson, “Predicted martensitic and quantified metamagnetic transformations in FeRh,” arXiv:1702.03042 [cond-mat, physics:physics] (2017).

  40. N. A. Zarkevich and D. D. Johnson, “FeRh ground state and martensitic transformation,” Phys. Rev. B 97, 014 202 (2018). https://doi.org/10.1103/PhysRevB.97.014202

    Article  Google Scholar 

  41. M. R. Ibarra and P. A. Algarabel, “Giant volume magnetostriction in the FeRh alloy,” Phys. Rev. B 50, 4196–4199 (1994). https://doi.org/10.1103/PhysRevB.50.4196

    Article  CAS  Google Scholar 

  42. P. A. Algarabel, M. R. Ibarra, C. Marquina, A. del Moral, J. Galibert, M. Iqbal, and S. Askenazy, “Giant room-temperature magnetoresistance in the FeRh alloy,” Appl. Phys. Lett. 66, 3061–3063 (1995). https://doi.org/10.1063/1.114278

    Article  Google Scholar 

  43. A. M. Stoffel, “Magnetic and magneto-optic properties of FeRh and CrO2,” J. Appl. Phys. 40, 1238–1239 (1969). https://doi.org/10.1063/1.1657608

    Article  CAS  Google Scholar 

  44. S. Yuasa, T. Akiyama, H. Miyajima, and Y. Otani, “Change in the resistivity of bcc and bct FeRh alloys at first-order magnetic phase transitions,” J. Phys. Soc. Jpn. 64, 3978–3985 (1969). https://doi.org/10.1143/JPSJ.64.3978

    Article  Google Scholar 

  45. W. Lu, Y. Xu, X. Fang, Y. Song, and X. Li, “Kinetics of first order magnetostructural transition in single crystalline FeRh thin film,” in Proc. of the 2015 IEEE Magnetics Conference (INTERMAG), 1–1 (2015).

  46. J. M. Lommel, “Thermodynamics of the first-order transition in FeRh,” J. Appl. Phys. 40, 3880–3881 (1969). https://doi.org/10.1063/1.1658300

    Article  CAS  Google Scholar 

  47. J. B. McKinnon, D. Melville, and E. W. Lee, Solid State Phys. Conf. (University of Manchester, 1968).

  48. E. A. Zavadskii and I. G. Fakidov,” Soviet Phys. Solid State, 9 (1967).

  49. L. Pál, G. Zimmer, J. C. Picoch, and T. Tarnóczi, “The magnetic field dependence of the antiferromagnetic-ferromagnetic transition temperature in FeRh,” Acta Phys. 32, 135–140 (1972). https://doi.org/10.1007/BF03157301

    Article  Google Scholar 

  50. C. Kittel, “Model of exchange-inversion magnetization,” Phys. Rev. 120, 335–342 (1960). https://doi.org/10.1103/PhysRev.120.335

    Article  CAS  Google Scholar 

  51. J. A. Ricodeau and D. Melville, “Model of the antiferromagnetic-ferromagnetic transition in FeRh alloys,” J. Phys. F: Met. Phys. 2, 337 (1972). https://doi.org/10.1088/0305-4608/2/2/024

    Article  CAS  Google Scholar 

  52. N. P. Grazhdankina, “Magnetic phase transitions of first order,” Usp. Fiz. Nauk 96, 291–325 (1968)

    Article  CAS  Google Scholar 

  53. P. Perrot, A to Z of Thermodynamics (Oxford University, 1998).

    Google Scholar 

  54. E. Stern-Taulats, A. Planes, P. Lloveras, M. Barrio, J.‑L. Tamarit, S. Pramanick, S. Majumdar, C. Frontera, and L. Mañosa, “Barocaloric and magnetocaloric effects in Fe49Rh51,” Phys. Rev. B 89, 214 105 (2014). https://doi.org/10.1103/PhysRevB.89.214105

    Article  CAS  Google Scholar 

  55. A. P. Kamantsev, V. V. Koledov, A. V. Mashirov, E. T. Dilmieva, V. G. Shavrov, J. Cwik, I. S. Tereshina, M. V. Lyange, V. V. Khovaylo, G. Porcari, et al., “Properties of metamagnetic alloy Fe48Rh52 in high magnetic fields,” Bull. Russ. Acad. Sci.: Phys. 79, 1086–1088 (2015). https://doi.org/10.3103/S1062873815090105

    Article  CAS  Google Scholar 

  56. M. P. Annaorazov, M. Ünal, S. A. Nikitin, A. L. Tyurin, K. A. Asatryan, and A. K. Dovletov, “Limit field of the AF–F transition in FeRh,” J. Alloys Compd. 348, 18–22 (2003). https://doi.org/10.1016/S0925-8388(02)00829-0

    Article  CAS  Google Scholar 

  57. J.-U. Thiele, T. Hauet, and O. Hellwig, “Design of Co/Pd multilayer system with antiferromagnetic-to-ferromagnetic phase transition,” Appl. Phys. Lett. 92, 242 502 (2008). https://doi.org/10.1063/1.2946654

    Article  CAS  Google Scholar 

  58. I. Dubenko, T. Samanta, A. Quetz, A. Kazakov, I. Rodionov, D. Mettus, V. Prudnikov, S. Stadler, P. Adams, J. Prestigiacomo, et al., “The comparison of direct and indirect methods for determining the magnetocaloric parameters in the Heusler alloy Ni50Mn34.8In14.2B,” Appl. Phys. Lett. 100, 192 402 (2012). https://doi.org/10.1063/1.4714539

    Article  CAS  Google Scholar 

  59. I. Dubenko, T. Samanta, A. Quetz, A. Kazakov, I. Rodionov, D. Mettus, V. Prudnikov, S. Stadler, P. W. Adams, J. Prestigiacomo, et al., “The adiabatic temperature changes in the vicinity of the first-order paramagnetic-ferromagnetic transition in the Ni–Mn–In–B Heusler alloy,” IEEE Trans. Magn. 48, 3738–3741 (2012). https://doi.org/10.1109/TMAG.2012.2197596

    Article  CAS  Google Scholar 

  60. E. G. Gerasimov and N. V. Mushnikov, “Magnetic Phase Transitions in Compounds with a Layered Crystal Structure,” Phys. Met. Metallogr. 119, 1309–1312 (2018). https://doi.org/10.1134/S0031918X18130069

    Article  CAS  Google Scholar 

  61. M. Sharma, H. M. Aarbogh, J. -U. Thiele, S. Maat, E. E. Fullerton, and C. Leighton, “Magnetotransport properties of epitaxial MgO(001)/FeRh films across the antiferromagnet to ferromagnet transition,” J. Appl. Phys. 109, 083 913 (2011). https://doi.org/10.1063/1.3573503

    Article  CAS  Google Scholar 

  62. J. van Driel, R. Coehoorn, G. J. Strijkers, E. Brück, and F. R. de Boer, “Compositional dependence of the giant magnetoresistance in FexRh1 – x thin films,” J. Appl. Phys. 85, 1026–1036 (1999). https://doi.org/10.1063/1.369224

    Article  CAS  Google Scholar 

  63. I. Suzuki, T. Naito, M. Itoh, T. Sato, and T. Taniyama, “Clear correspondence between magnetoresistance and magnetization of epitaxially grown ordered FeRh thin films,” J. Appl. Phys. 109, 07C717 (2011). https://doi.org/10.1063/1.3556754

  64. N. V. Baranov, P. E. Markin, S. V. Zemlyanski, H. Michor, and G. Hilscher, “Giant magnetoresistance in antiferromagnetically ordered FeRh and Mn2Sb based alloys,” J. Magn. Magn. Mater. 157–158, 401–402 (1996). https://doi.org/10.1016/0304-8853(95)00966-3

    Article  Google Scholar 

  65. V. L. Moruzzi and P. M. Marcus, “Giant magnetoresistance in FeRh: A natural magnetic multilayer,” Phys. Rev. B 46, 14 198–14 200 (1992). https://doi.org/10.1103/PhysRevB.46.14198

    Article  Google Scholar 

  66. J. Chen, J. Ma, Y. Zhang, L. Wu, and C. W. Nan, “Magnetic phase transition and large room temperature magnetoresistance in Ni doped FeRh films,” J. Alloys Compd. 741, 557–561 (2018). https://doi.org/10.1016/j.jallcom.2018.01.186

    Article  CAS  Google Scholar 

  67. C. Koenig, “Self-consistent band structure of paramagnetic, ferromagnetic and antiferromagnetic ordered FeRh,” J. Phys. F: Met. Phys. 12, 1123. https://doi.org/10.1088/0305-4608/12/6/013

  68. V. L. Moruzzi and P. M. Marcus, “Antiferromagnetic-ferromagnetic transition in FeRh,” Phys. Rev. B 46, 2864–2873 (1992). https://doi.org/10.1103/PhysRevB.46.2864

    Article  CAS  Google Scholar 

  69. R. Y. Gu and V. P. Antropov, “Dominance of the spin-wave contribution to the magnetic phase transition in FeRh,” Phys. Rev. B 72, 012 403 (2005). https://doi.org/10.1103/PhysRevB.72.012403

  70. L. M. Sandratskii and P. Mavropoulos, “Magnetic excitations and femtomagnetism of FeRh: A first-principles study,” Phys. Rev. B 83, 174 408 (2011). https://doi.org/10.1103/PhysRevB.83.174408

    Article  CAS  Google Scholar 

  71. J. B. Staunton, R. Banerjee, M. Dias, A. Deak, and L. Szunyogh, “Fluctuating local moments, itinerant electrons, and the magnetocaloric effect: Compositional hypersensitivity of FeRh,” Phys. Rev. B 89, 054 427 (2014). https://doi.org/10.1103/PhysRevB.89.054427

    Article  CAS  Google Scholar 

  72. I. Turek, J. Kudrnovský, V. Drchal, P. Weinberger, and P. H. Dederichs, “Theory of electron transport in FeRh-based natural magnetic multilayers,” Czech. J. Phys. 52, 203–208 (2002). https://doi.org/10.1023/A:1014415611741

    Article  CAS  Google Scholar 

  73. I. Turek, J. Kudrnovský, V. Drchal, P. Weinberger, and P. H. Dederichs, “Ab initio theory of transport in FeRh-based natural magnetic multilayers,” J. Magn. Magn. Mater. 240, 162–164 (2002). https://doi.org/10.1016/S0304-8853(01)00743-0

    Article  CAS  Google Scholar 

  74. V. L. Moruzzi and P. M. Marcus, “Structural effects on the magnetic properties of FePd and FeRh,” Phys. Rev. B 48, 16 106–16 108 (1993). https://doi.org/10.1103/PhysRevB.48.16106

    Article  Google Scholar 

  75. A. X. Gray, D. W. Cooke, P. Krüger, C. Bordel, A. M. Kaiser, S. Moyerman, E. E. Fullerton, S. Ueda, Y. Yamashita, A. Gloskovskii, et al., “Electronic structure changes across the metamagnetic transition in FeRh via hard X-ray photoemission,” Phys. Rev. Lett. 108, 257 208 (2012). https://doi.org/10.1103/PhysRevLett.108.257208

    Article  CAS  Google Scholar 

  76. R. Barua, F. Jiménez-Villacorta, and L. H. Lewis, “Predicting magnetostructural trends in FeRh-based ternary systems,” Appl. Phys. Lett. 103, 102 407 (2013). https://doi.org/10.1063/1.4820583

    Article  CAS  Google Scholar 

  77. N. V. Baranov and E. A. Barabanova, “Electrical resistivity and magnetic phase transitions in modified FeRh compounds,” J. Alloys Compd. 219, 139–148 (1995). https://doi.org/10.1016/0925-8388(94)01375-6

    Article  CAS  Google Scholar 

  78. P. Tu, A. J. Heeger, J. S. Kouvel, and J. B. Comly, “Mechanism for the first-order magnetic transition in the FeRh system,” J. Appl. Phys. 40, 1368–1369 (1969). https://doi.org/10.1063/1.1657670

    Article  CAS  Google Scholar 

  79. W. Lu, N. T. Nam, and T. Suzuki, “First-order magnetic phase transition in FeRh–Pt thin films,” J. Appl. Phys. 105, 07A904 (2009). https://doi.org/10.1063/1.3065973

  80. M. P. Annaorazov, S. A. Nikitin, A. L. Tyurin, K. A. Asatryan, and A. K. Dovletov, “Anomalously high entropy change in FeRh alloy,” J. Appl. Phys. 79, 1689–1695 (1996). https://doi.org/10.1063/1.360955

    Article  Google Scholar 

  81. A. J. Heeger, “Pressure dependence of the FeRh first-order phase transition,” J. Appl. Phys. 41, 4751–4752 (1970). https://doi.org/10.1063/1.1658533

    Article  Google Scholar 

  82. M. A. Khan, C. Koenig, and R. Riedinger, “Interband dielectric constants in antiferromagnetic, ferromagnetic and paramagnetic phases of FeRh,” J. Phys. F: Met. Phys. 13, L159 (1983). https://doi.org/10.1088/0305-4608/13/8/004

    Article  Google Scholar 

  83. N. I. Kulikov, E. T. Kulatov, L. I. Vinokurova, and M. Pardavi-Horvath, “Electronic band structure and magnetic order in FeRh,” J. Phys. F: Met. Phys. 12, L91 (1982). https://doi.org/10.1088/0305-4608/12/6/004

    Article  Google Scholar 

  84. R. H. Dean and G. A. Jakins, “Hyperfine field distribution in FeMo, FeRh and FeIr,” J. Phys. F: Met. Phys. 8, 1563 (1978). https://doi.org/10.1088/0305-4608/8/7/028

    Article  Google Scholar 

  85. C. Stamm, J.-U. Thiele, T. Kachel, I. Radu, P. Ramm, M. Kosuth, J. Minár, H. Ebert, H. A. Dürr, W. Eberhardt et al., “Antiferromagnetic-ferromagnetic phase transition in FeRh probed by X-ray magnetic circular dichroism,” Phys. Rev. B 77, 184 401 (2008). https://doi.org/10.1103/PhysRevB.77.184401

    Article  CAS  Google Scholar 

  86. L.M. Sandratskii and P. Buczek, “Lifetimes and chirality of spin waves in antiferromagnetic and ferromagnetic FeRh from the perspective of time-dependent density functional theory,” Phys. Rev. B 8, 020 406 (2012). https://doi.org/10.1103/PhysRevB.85.020406

    Article  CAS  Google Scholar 

  87. A. Hernando, J. M. Rojo, J. C. Gómez Sal, and J. M. Barandiarán, “Density of states and indirect exchange in metallic systems,” Acta Phys. Pol., A 90, 1227 (1997).

    Google Scholar 

  88. K. Nakada and H. Yamada, “Fermi surface and antiferromagnetism of FeRh,” J. Magn. Magn. Mater. 310, 1046–1047 (2007). https://doi.org/10.1016/j.jmmm.2006.10.235

    Article  CAS  Google Scholar 

  89. H. Ohnishi, K. Katoh, and K. Motizuki, “Magnetic phase diagram of system with two different atoms in unit cell,” J. Magn. Magn. Mater. 3134, Part 1, 55–56 (1983). https://doi.org/10.1016/0304-8853(83)90150-6

    Article  Google Scholar 

  90. A. Szajek and J. A. Morkowski, “Phase diagram of the metamagnetic FeRh,” J. Magn. Magn. Mater. 115, 171–173 (1992). https://doi.org/10.1016/0304-8853(92)90049-T

    Article  Google Scholar 

  91. V. L. Moruzzi and P. M. Marcus, “Magnetic structure in FeRh from constrained total-energy calculations,” Solid State Commun. 83, 735–738 (1992). https://doi.org/10.1016/0038-1098(92)90154-2

    Article  Google Scholar 

  92. H. Yamada, H. Shimizu, K. Yamamoto, and K. Uebayashi, “Structure and magnetism of 3d and 4d transition-metal alloys TT' (T = Mn, Fe and T' = Rh, Pd) with CuAu-I type ordered structure,” J. Alloys Compd. 415, 31–37 (2006). https://doi.org/10.1016/j.jallcom.2005.07.046

    Article  CAS  Google Scholar 

  93. C. J. Schinkel and R. Hartog, Hochstenbach F.H.A.M., “On the magnetic and electrical properties of nearly equiatomic ordered FeRh alloys,” J. Phys. F: Met. Phys. 4, 1412 (1974). https://doi.org/10.1088/0305-4608/4/9/013

    Article  Google Scholar 

  94. M. Alouani and M.A. Khan, “X-ray emission and absorption in intermetallic compounds: FeAl and FeRh,” J. Phys. F: Met. Phys. 17, 519 (1987). https://doi.org/10.1088/0305-4608/17/2/019

    Article  Google Scholar 

  95. A. Jezierski and G. Borstel, “Electronic and magnetic properties of FeRhTM alloys,” J. Magn. Magn. Mater. 140144, Part 1, 81–82 (1995). https://doi.org/10.1016/0304-8853(94)01146-X

    Article  Google Scholar 

  96. P. A. Igoshev, E. E. Kokorina, and I. A. Nekrasov, “Study of the magnetocaloric effect in correlated metallic systems with Van Hove singularities in the electronic spectrum,” Fiz. Met. Metalloved., 100–106 (1991).

  97. N. Pérez, A. Chirkova, K. P. Skokov, T. G. Woodcock, O. Gutfleisch, N. V. Baranov, and K. Nielsch, Schierning G., ”Electronic entropy change in Ni-doped FeRh” Mater. Today Phys. 9, 100 129 (2019). https://doi.org/10.1016/j.mtphys.2019.100129

    Article  Google Scholar 

  98. Y. Khwaja and M. Nauciel-Bloch, “Off-stoichiometry effects in the antiferromagnetic FeRh alloy,” Phys. Status Solidi B 83, 413–424 (1977). https://doi.org/10.1002/pssb.2220830207

    Article  Google Scholar 

  99. Y. Khwaja and M. Nauciel-Bloch, “The effect of a substitutional Fe impurity on the magnetic properties of the antiferromagnetic FeRh alloy,” Solid State Commun. 21, 529–532 (1977). https://doi.org/10.1016/0038-1098(77)90025-4

    Article  Google Scholar 

  100. J. M. Lommel, “Magnetic and electrical properties of FeRh thin films,” J. Appl. Phys. 37, 1483–1484 (1966). https://doi.org/10.1063/1.1708527

    Article  CAS  Google Scholar 

  101. S. Hashi, S. Yanase, Y. Okazaki, and M. Inoue, “A large thermal elasticity of the ordered FeRh alloy film with sharp magnetic transition,” IEEE Trans. Magn. 40, 2784–2786 (2004). https://doi.org/10.1109/TMAG.2004.832445

    Article  CAS  Google Scholar 

  102. J. Cao, N. T. Nam, S. Inoue, H. Y. Y. Ko, N. N. Phuoc, and T. Suzuki, “Magnetization behaviors for FeRh single crystal thin films,” J. Appl. Phys. 103, 07F501 (2008). https://doi.org/10.1063/1.2828812

  103. A. Heidarian, R. Bali, J. Grenzer, R. A. Wilhelm, R. Heller, O. Yildirim, J. Lindner, and K. Potzger, “Tuning the antiferromagnetic to ferromagnetic phase transition in FeRh thin films by means of low-energy/low fluence ion irradiation,” Nucl. Instrum. Methods Phys. Res., Sect. B 358, 251–254 (2015). https://doi.org/10.1016/j.nimb.2015.06.027

    Article  CAS  Google Scholar 

  104. M. Rosenberg, V. Kuncser, O. Crisan, A. Hernando, E. Navarro, and G. Filoti, “Mössbauer spectroscopy and magnetic study of FeRh,” J. Magn. Magn. Mater. 177–181, 135–136 (1998). https://doi.org/10.1016/S0304-8853(97)00662-8

    Article  Google Scholar 

  105. A. Hernando, E. Navarro, M. Multigner, A. R. Yavari, D. Fiorani, M. Rosenberg, G. Filoti, and R. Caciuffo, “Boundary spin disorder in nanocrystalline FeRh alloys,” Phys. Rev. B 58, 5181–5184 (1998). https://doi.org/10.1103/PhysRevB.58.5181

    Article  CAS  Google Scholar 

  106. A. Hernando, J. M. Rojo, R. Yavari, E. Navarro, J. M. Barandiarán, and M. R. Ibarra, “On the Antiferromagnetism of Fe–Rh,” Mater. Sci. Forum 235238, 675–684 (1997). https://doi.org/10.4028/www.scientific.net/MSF.235-238.675

  107. A. Hernando, E. Navarro, A. R. Yavari, D. Fiorani, and M. Rosenberg, “Magnetic properties of disordered grain boundaries in nanocrystalline FeRh alloys,” J. Magn. Magn. Mater. 203, 223–225 (1999). https://doi.org/10.1016/S0304-8853(99)00247-4

    Article  CAS  Google Scholar 

  108. A. Hernando and E. Navarro, “Nanocrystalline ball milled fcc-FeRh alloys,” Mater. Sci. Forum 343–346, 787–792 (2000). https://doi.org/10.4028/www.scientific.net/MSF.343-346.787

  109. V. Kuncser, M. Rosenberg, G. Principi, U. Russo, A. Hernando, E. Navarro, and G. Filoti, “Magnetic interactions in nanocrystalline FeRh alloys studied by in field Mössbauer spectroscopy,” J. Alloys Compd. 308, 21–29 (2000). https://doi.org/10.1016/S0925-8388(00)00821-5

    Article  CAS  Google Scholar 

  110. E. Navarro, D. Fiorani, R. Yavari, M. Rosenberg, M. Multigner, A. Hernando, R. Caciuffo, D. Rinaldi, and S. Gialanella, “Low temperature magnetic properties of FCC FeRh obtained by ball milling,” Mater. Sci. Forum 269–272, 133–138 (1998). https://doi.org/10.4028/www.scientific.net/MSF.269-272.133

  111. A. Hernando, E. Navarro, A. R. Yavari, D. Fiorani, and M. Rosenberg, “Grain-boundary structure in nanocrystalline ball-milled FeRh,” J. Metastable Nanocryst. Mater. 1, 191–196 (1999). doi 10.4028/www.scientific.net/JMNM.1.191

  112. C. Paduani, “Magnetic properties of Fe–Rh alloys,” J. Appl. Phys. 90, 6251–6254 (2001). https://doi.org/10.1063/1.1413708

    Article  CAS  Google Scholar 

  113. O. N. Mryasov, “Magnetic interactions and phase transformations in FeM, M = (Pt, Rh) ordered alloys,” Phase Transitions 78, 197–208 (2005). https://doi.org/10.1080/01411590412331316591

    Article  CAS  Google Scholar 

  114. A. Deák, E. Simon, L. Balogh, L. Szunyogh, M. Dias Santos, and J. B. Staunton, “Metallic magnetism at finite temperatures studied by relativistic disordered moment description: Theory and applications,” Phys. Rev. B 89, 224 401 (2014). https://doi.org/10.1103/PhysRevB.89.224401

    Article  CAS  Google Scholar 

  115. S. Jekal, S. H. Rhim, S. C. Hong, W. Son, and A. B. Shick, “Surface-termination-dependent magnetism and strong perpendicular magnetocrystalline anisotropy of an FeRh(001) thin film,” Phys. Rev. B 92, 064 410 (2015). https://doi.org/10.1103/PhysRevB.92.064410

    Article  CAS  Google Scholar 

  116. S. Inoue, N. N. Phuoc, J. Cao, N. T. Nam, H. Y. Y. Ko, and T. Suzuki, “Structural and magneto-optical properties of FeRh thin films,” J. Appl. Phys. 103, 07B312 (2008). https://doi.org/10.1063/1.2834446

  117. S. Inoue, N. T. Nam, N. N. Phuoc, J. Cao, KoH. Y. Yu, and T. Suzuki, “Magnetic and magneto-optical properties of FeRh thin films,” J. Magn. Magn. Mater. 320, 3113–3116 (2008). https://doi.org/10.1016/j.jmmm.2008.08.076

    Article  CAS  Google Scholar 

  118. W. Lu, N. T. Nam, and T. Suzuki, “Effect of Pt doping on the structure, magnetic, and magneto-optical properties of ordered FeRh-Pt thin films,” IEEE Trans. Magn. 45, 2716–2719 (2009). https://doi.org/10.1109/TMAG.2009.2018650

    Article  CAS  Google Scholar 

  119. W. Lu, B. Yan, and T. Suzuki, “Magnetic phase transition and magneto-optical properties in epitaxial FeRh0.95Pt0.05 (0 0 1) single-crystal thin film,” Scr. Mater. 61, 851–854 (2009). https://doi.org/10.1016/j.scriptamat.2009.07.014

    Article  CAS  Google Scholar 

  120. E. Mancini, F. Pressacco, M. Haertinger, E. E. Fullerton, T. Suzuki, G. Woltersdorf, and C. H. Back, “Magnetic phase transition in iron–rhodium thin films probed by ferromagnetic resonance,” J. Phys. D: Appl. Phys. 46, 245 302 (2013). https://doi.org/10.1088/0022-3727/46/24/245302

    Article  CAS  Google Scholar 

  121. C. Bordel, J. Juraszek, D. W. Cooke, C. Baldasseroni, S. Mankovsky, J. Minár, H. Ebert, S. Moyerman, E. E. Fullerton, and F. Hellman, “Fe spin reorientation across the metamagnetic transition in strained FeRh thin films,” Phys. Rev. Lett. 109, 117 201 (2012). https://doi.org/10.1103/PhysRevLett.109.117201

    Article  CAS  Google Scholar 

  122. A. A. Amirov, V. V. Rodionov, V. Komanicky, V. Latyshev, E. Yu. Kaniukov, and V. V. Rodionova, “Magnetic phase transition and magnetoelectric coupling in FeRh/PZT film composite,” J. Magn. Magn. Mater. 479, 287–290 (2019). https://doi.org/10.1016/j.jmmm.2019.01.079

    Article  CAS  Google Scholar 

  123. Y. Xie, Q. Zhan, T. Shang, H. Yang, Y. Liu, B. Wang, and R.-W. Li, “Electric field control of magnetic properties in FeRh/PMN-PT heterostructures,” AIP Adv. 8, 055816 (2018). https://doi.org/10.1063/1.5003435

    Article  CAS  Google Scholar 

  124. I. Fina, A. Quintana, J. Padilla-Pantoja, X. Martí, F. Macià, F. Sánchez, M. Foerster, L. Aballe, J. Fontcuberta, and J. Sort, “Electric-field-adjustable time-dependent magnetoelectric response in martensitic FeRh alloy,” ACS Appl. Mater. Interfaces 9, 15 577–15 582 (2017). https://doi.org/10.1021/acsami.7b00476

    Article  CAS  Google Scholar 

  125. K. Qiao, F. Hu, Y. Liu, J. Li, H. Kuang, H. Zhang, W. Liang, J. Wang, J. Sun, and B. Shen, “Novel reduction of hysteresis loss controlled by strain memory effect in FeRh/PMN-PT heterostructures,” Nano Energy 59, 285–294 (2019). https://doi.org/10.1016/j.nanoen.2019.02.044

    Article  CAS  Google Scholar 

  126. Q. B. Hu, J. Li, C. C. Wang, Z. J. Zhou, Q. Q. Cao, T. J. Zhou, D. H. Wang, and Y. W. Du, “Electric field tuning of magnetocaloric effect in FeRh0.96Pd0.04/PMN-PT composite near room temperature,” Appl. Phys. Lett. 110, 222 408 (2017). https://doi.org/10.1063/1.4984901

    Article  CAS  Google Scholar 

  127. Z. Feng, H. Yan, and Z. Liu, “Electric-Field Control of Magnetic Order: From FeRh to topological antiferromagnetic spintronics,” Adv. Electron. Mater. 5, 1 800 466 (2019). https://doi.org/10.1002/aelm.201800466

    Article  CAS  Google Scholar 

  128. C. Q. Yu, H. Li, Y. M. Luo, L. Y. Zhu, Z. H. Qian, and T. J. Zhou, “Thickness-dependent magnetic order and phase-transition dynamics in epitaxial Fe-rich FeRh thin films,” Phys. Lett. A 383, 2424–2428 (2019). https://doi.org/10.1016/j.physleta.2019.04.058

    Article  CAS  Google Scholar 

  129. Y. Xie, Q. Zhan, T. Shang, H. Yang, B. Wang, J. Tang, and R.-W. Li, “Effect of epitaxial strain and lattice mismatch on magnetic and transport behaviors in metamagnetic FeRh thin films,” AIP Adv. 7, 056 314 (2017). https://doi.org/10.1063/1.4976301

    Article  CAS  Google Scholar 

  130. A. Ceballos, Z. Chen, O. Schneider, C. Bordel, L.‑W. Wang, and F. Hellman, “Effect of strain and thickness on the transition temperature of epitaxial FeRh thin-films,” Appl. Phys. Lett. 111, 172 401 (2017). https://doi.org/10.1063/1.4997901

    Article  CAS  Google Scholar 

  131. V. Kuncser, R. Nicula, U. Ponkratz, A. Jianu, M. Stir, E. Burkel, and G. Filoti, “Structural phase transition induced in Fe50Rh50 alloys by high pressure,” J. Alloys Compd. 386, 8–11 (2005). https://doi.org/10.1016/j.jallcom.2004.04.139

    Article  CAS  Google Scholar 

  132. A. M. Chirkova, A. S. Volegov, D. S. Neznakhin, E. A. Stepanova, and N. V. Baranov, “Pressure induced AF–F–AF magnetic phase transformations in Pd substituted FeRh compound,” Solid State Phenom. 190, 299–302 (2012). https://doi.org/10.4028/www.scientific.net/SSP.190.299

  133. S. Yuasa, H. Miyajima, Y. Otani, K. Tsuji, Y. Katayama, K. Kusumi, H. Yokoyama, K. Yaoita, and O. Shimomura, “First-order magnetic phase transition in bcc FeRh–Ir alloy under high pressures up to 6.2 GPa,” J. Phys. Soc. Jpn. 63, 855–858 (1994). https://doi.org/10.1143/JPSJ.63.855

    Article  CAS  Google Scholar 

  134. Y. Kaneta, S. Ishino, Y. Chen, S. Iwata, and A. Iwase, “Theoretical calculations for magnetic property of FeRh inter-metallic compound with site-exchange defects,” Jpn. J. Appl. Phys. 50, 105 803 (2011). https://doi.org/10.1143/JJAP.50.105803

    Article  CAS  Google Scholar 

  135. Y. Kibata, F. Hori, R. Oshima, M. Komatsu, and M. Kiritani, “Defect structures of intermetallic FeRh alloys induced by high-speed deformation,” In Proceedings of the Symposium BB—Defect Properties and Related Phenomena in Intermetallic Alloys (2002) p. 753.

  136. R. Oshima, F. Hori, Y. Kibata, M. Komatsu, and M. Kiritani, “Defect structures and phase transitions of FeRh alloys deformed at high speed deformation,” Mater. Sci. Eng., A 350, 139–144 (2003). https://doi.org/10.1016/S0921-5093(02)00715-3

    Article  Google Scholar 

  137. R. Oshima, F. Hori, M. Fukuzumi, M. Komatsu, and M. Kiritani, “Positron annihilation study on defects and phase transition of FeRh alloys subjected to high-speed deformation,” Radiat. Eff. Defects Solids 157, 127–135 (2002). https://doi.org/10.1080/10420150211400

    Article  CAS  Google Scholar 

  138. E. Navarro, A. R. Yavari, A. Hernando, C. Marquina, and M. R. Ibarra, “Enthalpies of B2 antiferro-ferromagnetic and metastable fcc-B2 transformations in FeRh,” Solid State Commun. 100, 57–60 (1996). https://doi.org/10.1016/0038-1098(96)00378-X

    Article  CAS  Google Scholar 

  139. L. J. Swartzendruber, “The Fe−Rh (Iron-Rhodium) system,” Bull. Alloy Phase Diagrams 5, 456–462 (1984). https://doi.org/10.1007/BF02872896

    Article  Google Scholar 

  140. L. Zsoldos, “Lattice Parameter Change of FeRh alloys due to antiferromagnetic-ferromagnetic transformation,” Phys. Status Solidi B 20, 25–28 (1967). https://doi.org/10.1002/pssb.19670200148

    Article  Google Scholar 

  141. C. C. Chao, P. Duwez, and C. C. Tsuei, “Metastable fcc Fe–Rh alloys and the Fe–Rh phase diagram,” J. Appl. Phys. 42, 4282–4284 (1971). https://doi.org/10.1063/1.1659766

    Article  CAS  Google Scholar 

  142. G. Shirane, C. W. Chen, P. A. Flinn, and R. Nathans, “Mössbauer study of hyperfine fields and isomer shifts in the Fe–Rh alloys,” Phys. Rev. 131, 183–190 (1963). https://doi.org/10.1103/PhysRev.131.183

    Article  CAS  Google Scholar 

  143. K. H. J. Buschow, P. G. van Engen, and R. Jongebreur, “Magneto-optical properties of metallic ferromagnetic materials,” J. Magn. Magn. Mater. 38, 1–22 (1983). https://doi.org/10.1016/0304-8853(83)90097-5

    Article  CAS  Google Scholar 

  144. P. M. Marcus, V. L. Moruzzi, and S. L. Qiu, “Type-II antiferromagnetism in compounds of iron with 4d metals,” Phys. Rev. B: Condens. Matter Mater. Phys. 54, 11 933–11 935 (1996).

    Article  Google Scholar 

  145. K. Kobayashi, H. Maruyama, T. Iwazumi, N. Kawamura, and H. Yamazaki, “Magnetic circular X-ray dichroism at Pd L2,3-edges in Fe–Pd alloys,” Solid State Commun. 97, 491–496 (1996). https://doi.org/10.1016/0038-1098(95)00708-3

    Article  CAS  Google Scholar 

  146. M. Takahashi and R. Oshima, “Annealing effect on phase transition of equiatomic FeRh alloy,” Mater. Trans., JIM. 36, 735–742 (1995). https://doi.org/10.2320/matertrans1989.36.735

    Article  CAS  Google Scholar 

  147. E. Hofer, “Magnetic properties of Rh-rich FeRh alloy,” J. Phys. Chem. Solids 27, 1552–1555 (1966). https://doi.org/10.1016/0022-3697(66)90151-X

    Article  CAS  Google Scholar 

  148. M. Manekar and S. B. Roy, “Reproducible room temperature giant magnetocaloric effect in Fe–Rh,” J. Phys. D: Appl. Phys. 41, 192 004 (2008). https://doi.org/10.1088/0022-3727/41/19/192004

    Article  CAS  Google Scholar 

  149. J. M. Lommel and J. S. Kouvel, “Effects of mechanical and thermal treatment on the structure and magnetic transitions in FeRh,” J. Appl. Phys. 38, 1263–1264 (1967). https://doi.org/10.1063/1.1709570

    Article  CAS  Google Scholar 

  150. C. Suryanarayana, “Mechanical alloying and milling,” Prog. Mater. Sci. 46, 1–184 (2001). https://doi.org/10.1016/S0079-6425(99)00010-9

    Article  CAS  Google Scholar 

  151. C. Marquina, M. R. Ibarra, P. A. Algarabel, A. Hernando, P. Crespo, P. Agudo, A. R. Yavari, and E. Navarro, “Magnetic and magnetoelastic behavior of mechanically alloyed FeRh compound,” J. Appl. Phys. 81, 2315–2320 (1997). https://doi.org/10.1063/1.364290

    Article  CAS  Google Scholar 

  152. H. Morita, K. Koike, T. Kaneko, K. Watanabe, and H. Fujimori, “Hysteresis loop of thermomagnetic curve of FeRh alloys,” J. Magn. Magn. Mater. 140–144, 77–78 (1995). https://doi.org/10.1016/0304-8853(94)00844-2

    Article  Google Scholar 

  153. P. Kushwaha, A. Lakhani, R. Rawat, and P. Chaddah, “Influence of thermal annealing and magnetic field on first order magnetic transition in Pd substituted FeRh,” J. Phys.: Conf. Ser. 200, 032 038 (2010). https://doi.org/10.1088/1742-6596/200/3/032038

    Article  CAS  Google Scholar 

  154. C. F. Sánchez–Valdés, R. R. Gimaev, M. López-Cruz, J. L. Sánchez Llamazares, V. I. Zverev, A. M. Tishin, A. M. G. Carvalho, D. J. M. Aguiar, Y. Mudryk, and V. K. Pecharsky, “The effect of cooling rate on magnetothermal properties of Fe49Rh51,” J. Magn. Magn. Mater. 498, 166 130 (2020). https://doi.org/10.1016/j.jmmm.2019.166130

    Article  CAS  Google Scholar 

  155. A. Chirkova, K. P. Skokov, L. Schultz, N. V. Baranov, O. Gutfleisch, and T. G. Woodcock, “Giant adiabatic temperature change in FeRh alloys evidenced by direct measurements under cyclic conditions,” Acta Mater. 106, 15–21 (2016). https://doi.org/10.1016/j.actamat.2015.11.054

    Article  CAS  Google Scholar 

  156. A. M. Tishin and Y. I. Spichkin, The Magnetocaloric Effect and its Applications (CRC Press, 2003). ISBN 978-1-4200-3337-3.

    Book  Google Scholar 

  157. M. P. Annaorazov, K. A. Asatryan, S. A. Nikitin, A. M. Tishin, and A. L. Tyurin, Pis’ma Zh. Tekh. Fiz., 12 (1991).

  158. M. P. Annaorazov, H. M. Güven, and K. Bärner, “COP of cooling cycles around the AF–F transition in FeRh based on experimental data,” J. Alloys Compd. 397, 26–30 (2005). https://doi.org/10.1016/j.jallcom.2005.01.016

    Article  CAS  Google Scholar 

  159. Y. I. Spichkin and A. M. Tishin, “Magnetocaloric effect at the first-order magnetic phase transitions,” J. Alloys Compd. 403, 38–44 (2005). https://doi.org/10.1016/j.jallcom.2005.05.026

    Article  CAS  Google Scholar 

  160. Y. I. Spichkin and A. M. Tishin, “Thermodynamic model of the magnetocaloric effect near the first-order magnetic phase transitions,” J. Magn. Magn. Mater. 290291, 700–702 (2005). https://doi.org/10.1016/j.jmmm.2004.11.341

    Article  CAS  Google Scholar 

  161. A. M. Aliev, A. B. Batdalov, L. N. Khanov, A. P. Kamantsev, V. V. Koledov, A. V. Mashirov, V. G. Shavrov, R. M. Grechishkin, A. R. Kaul’, and V. Sampath, “Reversible magnetocaloric effect in materials with first order phase transitions in cyclic magnetic fields: Fe48Rh52 and Sm0.6Sr0.4MnO3,” Appl. Phys. Lett. 109, 202 407 (2016). https://doi.org/10.1063/1.4968241

    Article  CAS  Google Scholar 

  162. K. P. Skokov, K.-H. Müller, J. D. Moore, J. Liu, A. Yu. Karpenkov, M. Krautz, and O. Gutfleisch, “Influence of thermal hysteresis and field cycling on the magnetocaloric effect in LaFe11.6Si1.4,” J. Alloys Compd. 552, 310–317 (2013). https://doi.org/10.1016/j.jallcom.2012.10.008

    Article  CAS  Google Scholar 

  163. V. I. Zverev, A. M. Tishin, and M. D. Kuz’min, “The maximum possible magnetocaloric ΔT effect,” J. Appl. Phys. 107, 043 907 (2010). https://doi.org/10.1063/1.3309769

    Article  CAS  Google Scholar 

  164. S. Yu. Dan’kov, A. M. Tishin, V. K. Pecharsky, and K. A. Gschneidner, “Magnetic phase transitions and the magnetothermal properties of gadolinium,” Phys. Rev. B 57, 3478–3490 (1998). https://doi.org/10.1103/PhysRevB.57.3478

    Article  Google Scholar 

  165. A. M. Tishin, “Magnetic refrigeration in the low-temperature range,” J. Appl. Phys. 68, 6480–6484 (1990). https://doi.org/10.1063/1.347186

    Article  CAS  Google Scholar 

  166. K. A. Gschneidner and V. K. Pecharsky, ”Intermetallic compounds for magnetic refrigeration,” in Intermetallic Compounds – Principles and Practice, Ed. by J. H. Westbrook and R. L. Fleischer (Wiley, New York, 2001), Vol. 3.

    Google Scholar 

  167. S. Yu. Dan’kov, T. I. Ivanova, and A. M. Tishin, Pis’ma JTP 18.

  168. S. A. Nikitin, G. Myalikgulyev, A. M. Tishin, M. P. Annaorazov, K. A. Asatryan, and A. L. Tyurin, “The magnetocaloric effect in Fe49Rh51 compound,” Phys. Lett. A 148, 363–366 (1990). https://doi.org/10.1016/0375-9601(90)90819-A

    Article  CAS  Google Scholar 

  169. Z. B. Guo, Y. W. Du, J. S. Zhu, H. Huang, W. P. Ding, and D. Feng, “Large magnetic entropy change in perovskite-type manganese oxides,” Phys. Rev. Lett. 78, 1142–1145 (1997). https://doi.org/10.1103/PhysRevLett.78.1142

    Article  CAS  Google Scholar 

  170. K. A. Jr. Gschneidner and V. K. Pecharsky, “Magnetocaloric materials,” Ann. Rev. Mater. Sci. 2000 30, 387–429. https://doi.org/10.1146/annurev.matsci.30.1.387

  171. V. K. Pecharsky and Jr. K. A. Gschneidner, “Giant magnetocaloric effect in Gd5Si2Ge2,” Phys. Rev. Lett. 78, 4494–4497 (1997). https://doi.org/10.1103/PhysRevLett.78.4494

    Article  CAS  Google Scholar 

  172. O. Tegus, E. Brück, L. Zhang, Dagula, K. H. J. Buschow, and F. R. de Boer, “Magnetic-phase transitions and magnetocaloric effects,” Phys. B: Condens. Matter 319, 174–192 (2002). https://doi.org/10.1016/S0921-4526(02)01119-5

    Article  CAS  Google Scholar 

  173. T. Hashimoto, T. Numasawa, M. Shino, and T. Okada, “Magnetic refrigeration in the temperature range from 10 K to room temperature: the ferromagnetic refrigerants,” Cryogenics 21, 647–653 (1981). https://doi.org/10.1016/0011-2275(81)90254-X

    Article  CAS  Google Scholar 

  174. H. Wada and Y. Tanabe, “Giant magnetocaloric effect of MnAs1 – xSbx,” Appl. Phys. Lett. 79, 3302–3304 (2001). https://doi.org/10.1063/1.1419048

    Article  CAS  Google Scholar 

  175. F. Hu, B. Shen, J. Sun, Z. Cheng, G. Rao, and X. Zhang, “Influence of negative lattice expansion and metamagnetic transition on magnetic entropy change in the compound LaFe11.4Si1.6,” Appl. Phys. Lett. 78, 3675–3677 (2001). https://doi.org/10.1063/1.1375836

    Article  CAS  Google Scholar 

  176. F. Hu, J. Sun, G. Wu, and B. Shen, “Magnetic entropy change in Ni50.1Mn20.7Ga29.6 single crystal,” J. Appl. Phys. 90, 5216–5219 (2001). https://doi.org/10.1063/1.1410890

    Article  CAS  Google Scholar 

  177. F. Hu, B. Shen, J. Sun, G. Wang, and Z. Cheng, “Very large magnetic entropy change near room temperature in LaFe11.2Co0.7Si1.1,” Appl. Phys. Lett. 80, 826–828 (2002). https://doi.org/10.1063/1.1447592

    Article  CAS  Google Scholar 

  178. T. Zhou, M. K. Cher, L. Shen, J. F. Hu, and Z. M. Yuan, “On the origin of giant magnetocaloric effect and thermal hysteresis in multifunctional α-FeRh thin films,” Phys. Lett. A 377, 3052–3059 (2013). https://doi.org/10.1016/j.physleta.2013.09.027

    Article  CAS  Google Scholar 

  179. S. Inoue, H. Y. Y. Ko, and T. Suzuki, “Magnetic properties of single-crystalline FeRh Alloy thin films,” IEEE Trans. Magn. 44, 2875–2878 (2008). https://doi.org/10.1109/TMAG.2008.2001846

    Article  CAS  Google Scholar 

  180. H. Y. Y. Ko and T. Suzuki, “Synthesis and magnetic properties of self-organized FeRh nanoparticles.,” J. Appl. Phys. 101, 09J103 (2007). https://doi.org/10.1063/1.2711285

  181. I. Radu, C. Stamm, N. Pontius, T. Kachel, P. Ramm, J. -U. Thiele, H. A. Dürr, and C. H. Back, “Laser-induced generation and quenching of magnetization on FeRh studied with time-resolved X-ray magnetic circular dichroism,” Phys. Rev. B 81, 104 415 (2010). https://doi.org/10.1103/PhysRevB.81.104415

    Article  CAS  Google Scholar 

  182. F. Quirin, M. Vattilana, U. Shymanovich, A.-E. El-Kamhawy, A. Tarasevitch, J. Hohlfeld, D. Linde, and K. Sokolowski-Tinten, “ Structural dynamics in FeRh during a laser-induced metamagnetic phase transition,” Phys. Rev. B 85, 020 103 (2012). https://doi.org/10.1103/PhysRevB.85.020103

    Article  CAS  Google Scholar 

  183. G. Ju, J. Hohlfeld, B. Bergman, R. J. M. van de Veerdonk, O. N. Mryasov, J. -Y. Kim, X. Wu, D. Weller, and B. Koopmans, “Ultrafast generation of ferromagnetic order via a laser-induced phase transformation in FeRh thin films,” Phys. Rev. Lett. 93, 197 403 (2004). https://doi.org/10.1103/PhysRevLett.93.197403

    Article  CAS  Google Scholar 

  184. U. Shymanovich, M. Nicoul, W. Lu, A. Tarasevitch, M. Kammler, M. H. Hoegen, D. von Linde, and K. von der Sokolowski-Tinten, “Coherent acoustic and optical phonons in laser-excited solids studied by ultrafast time-resolved X-ray diffraction,” in Proceedings of the AIP Conference Proceedings (AIP Publishing, 2010), vol. 1278, pp. 558–566.

  185. J.-U. Thiele, M. Buess, and C. H. Back, “Spin dynamics of the antiferromagnetic-to-ferromagnetic phase transition in FeRh on a sub-picosecond time scale,” Appl. Phys. Lett. 85, 2857–2859 (2004). https://doi.org/10.1063/1.1799244

    Article  CAS  Google Scholar 

  186. S. Günther, C. Spezzani, R. Ciprian, C. Grazioli, B. Ressel, M. Coreno, L. Poletto, P. Miotti, M. Sacchi, G. Panaccione, et al., “Testing spin-flip scattering as a possible mechanism of ultrafast demagnetization in ordered magnetic alloys,” Phys. Rev. B 90, 180 407 (2014). https://doi.org/10.1103/PhysRevB.90.180407

    Article  CAS  Google Scholar 

  187. B. Bergman, G. Ju, J. Hohlfeld, R. J. M. Van De Veerdonk, J. -Y. Kim, X. Wu, D. Weller, and B. Koopmans, “Identifying growth mechanisms for laser-induced magnetization in FeRh,” Phys. Rev. B: Condens. Matter Mater. Phys., 73 (2006). https://doi.org/10.1103/PhysRevB.73.060407

  188. D. J. Keavney, Y. Choi, M. V. Holt, V. Uhlir, D. Arena, E. E. Fullerton, P. J. Ryan, and J. -W. Kim, “Phase coexistence and kinetic arrest in the magnetostructural transition of the ordered alloy FeRh,” Sci. Rep. 8, 1–7 (2018). https://doi.org/10.1038/s41598-018-20101-0

    Article  CAS  Google Scholar 

  189. R. Barua, F. Jiménez-Villacorta, and L. H. Lewis, “Towards tailoring the magnetocaloric response in FeRh-based ternary compounds,” J. Appl. Phys. 115, 17A903 (2014). https://doi.org/10.1063/1.4854975

  190. R. Gimaev, V. Zverev, Y. Spichkin, A. Tishin, and T. Miyanaga, “Peculiarities of the magnetocaloric effect in FeRh-based alloys in the vicinity of the first order magnetic phase transition,” EPJ Web Conf. 185, 05008 (2018). https://doi.org/10.1051/epjconf/201818505008

  191. V. I. Zverev, A. M. Saletsky, R. R. Gimaev, A. M. Tishin, T. Miyanaga, and J. B. Staunton, “Influence of structural defects on the magnetocaloric effect in the vicinity of the first order magnetic transition in Fe50.4Rh49.6,” Appl. Phys. Lett. 108, 192 405 (2016). https://doi.org/10.1063/1.4949355

    Article  CAS  Google Scholar 

  192. P. A. Igoshev, E. E. Kokorina, and I. A. Nekrasov, “Investigation of the magnetocaloric effect in correlated metallic systems with Van Hove singularities in the electron spectrum,” Phys. Met. Metallogr. 118, 207–216 (2017). https://doi.org/10.1134/S0031918X17030048

    Article  CAS  Google Scholar 

  193. E. Z. Valiev and A. N. Pirogov, “Physical conditions for realization of large magnetocaloric effect in magnets,” Phys. Met. Metallogr. 119, 1317–1320 (20180. https://doi.org/10.1134/S0031918X18130227

  194. S. M. Emelyanova, N. G. Bebenin, V. P. Dyakina, V. V. Chistyakov, T. V. Dyachkova, A. P. Tyutyunnik, R. L. Wang, C. P. Yang, F. Sauerzopf, and V. V. Marchenkov, “Magnetocaloric Effect in Ni50Mn36Sb14 – xZx (Z = Al, Ge, x = 0, 2) Heusler Alloys,” Phys. Met. Metallogr. 119, 121–126 (2018). https://doi.org/10.1134/S0031918X18020047

    Article  CAS  Google Scholar 

  195. N. V. Baranov, S. V. Zemlyanski, and K. Kamenev, “Electrical resistivity and phase transitions in FeRh based compounds: influence of spin fluctuations,” In Itinerant Electron Magnetism: Fluctuation Effects, Ed. by D. Wagner, W. Brauneck, and A. Solontsov (NATO Science Series, Springer Netherlands, 1998) pp. 345–351. ISBN 978-0-7923-5203-7.

  196. S. Yuasa, Y. Otani, H. Miyajima, and A. Sakuma, “Magnetic properties of bcc FeRh1 – xMx systems,” IEEE Trans. J. Magn. Jpn. 9, 202–209 (1994). https://doi.org/10.1109/TJMJ.1994.4565981

    Article  Google Scholar 

  197. A. A. Inishev, E. G. Gerasimov, N. V. Mushnikov, P. B. Terent’ev, and V. S. Gaviko,” Structure, magnetic and magnetocaloric properties of nonstoichiometric TbCo2Mnx compounds,” Phys. Met. Metallogr. 119, 1036–1042 (2018). https://doi.org/10.1134/S0031918X18110042

    Article  CAS  Google Scholar 

  198. E. E. Kokorina and M. V. Medvedev, “Magnetocaloric effect in an ising ferromagnet in the constant coupling approximation,” Phys. Met. Metallogr. 119, 1050–1055 (2018). https://doi.org/10.1134/S0031918X18110091

    Article  CAS  Google Scholar 

  199. E. E. Kokorina and M. V. Medvedev, “Specific features of the magnetocaloric effect in a uniaxial paramagnet with Kramers ions,” Phys. Met. Metallogr. 120, 925–929 (2019). https://doi.org/10.1134/S0031918X19100053

    Article  CAS  Google Scholar 

  200. A. M. Tishin, V. K. Pecharsky, A. O. Pecharsky, K. A. Gschneidner Jr. Unpublished Results.

  201. S. A. Nikitin, G. Myalikgulyev, A. M. Tishin, M. P. Annaorazov, K. A. Asatryan, and A. L. Tyurin, Working Body of Magnetic Refrigerator (1992).

  202. M. P. Annaorazov, M. Unal, S. A. Nikitin, A. L. Tyurin, and K. A. Asatryan, “Magnetocaloric heat-pump cycles based on the AF–F transition in Fe–Rh alloys,” J. Magn. Magn. Mater. 251, 61–73 (2002). https://doi.org/10.1016/S0304-8853(02)00477-8

    Article  CAS  Google Scholar 

  203. M. P. Annaorazov, S. A. Nikitin, A. L. Tyurin, S. A. Akopyan, and R. W. Myndyev, “Heat pump cycles based on the AF–F transition in Fe–Rh alloys induced by tensile stress,” Int. J. Refrig. 25, 1034–1042 (2002). https://doi.org/10.1016/S0140-7007(02)00028-2

    Article  CAS  Google Scholar 

  204. N. V. Baranov, Y. A. Barabanova, and A. I. Kozlov, “The effect of partial substitution of rhodium on the magnetic and electrical properties of the FeRh alloy,” Phys. Met. Metallogr. 72, 65–70 (1991).

    Google Scholar 

  205. J. Nelson and S. Sanvito, “Predicting the Curie temperature of ferromagnets using machine learning,” Phys. Rev. Mater. 3, 104 405 (2019). https://doi.org/10.1103/PhysRevMaterials.3.104405

    Article  Google Scholar 

  206. Yu. I. Spichkin, A. P. Pyatakov, A. M. Tishin, and V. I. Zverev, RU Patent No. 2 563 387 C2 (20 September 2015).

  207. I. Astefanoaei, R. Gimaev, V. Zverev, and A. Stancu, “Modelling of working parameters of Gd and FeRh nanoparticles for magnetic hyperthermia,” Mater. Res. Express 6, 125 089 (2019). https://doi.org/10.1088/2053-1591/ab5c4a

    Article  CAS  Google Scholar 

  208. A. M. Tishin, Y. I. Spichkin, V. I. Zverev, and P. W. Egolf, “A review and new perspectives for the magnetocaloric effect: New materials and local heating and cooling inside the human body.” Int. J. Refrig. 68, 177–186 (2016). https://doi.org/10.1016/j.ijrefrig.2016.04.020

    Article  CAS  Google Scholar 

  209. C. W. Barton, L. Saharan, G. Hrkac, and T. Thomson, “Effect of Fe under layer in ultrathin FeRh films,” in Proc. of the 2015 IEEE Magnetics Conference (INTERMAG) (2015).

  210. T. J. Zhou, K. Cher, J. F. Hu, Z. M. Yuan, and B. Liu, “The concept and fabrication of exchange switchable trilayer of FePt/FeRh/FeCo with reduced switching field,” J. Appl. Phys. 111, 07C116 (2012). https://doi.org/10.1063/1.3677838

  211. N. T. Nam, W. Lu, and T. Suzuki, “Exchange bias of ferromagnetic/antiferromagnetic in FePt/FeRh bilayers,” J. Appl. Phys. 105, 07D708 (2009). https://doi.org/10.1063/1.3062813

  212. F. Garcia-Sanchez, O. Chubykalo-Fesenko, O. N. Mryasov, and R. W. Chantrell, “Multiscale models of hard-soft composite media,” J. Magn. Magn. Mater. 303, 282–286 (2006). https://doi.org/10.1016/j.jmmm.2006.01.135

    Article  CAS  Google Scholar 

  213. J.-U. Thiele, S. Maat, J. L. Robertson, and E. E. Fullerton, “Magnetic and structural properties of FePt–FeRh exchange spring films for thermally assisted magnetic recording media,” IEEE Trans. Magn. 40, 2537–2542 (2004). https://doi.org/10.1109/TMAG.2004.829325

    Article  CAS  Google Scholar 

  214. F. Garcia Sanchez, O. Chubykalo-Fesenko, O. Mryasov, and R. W. Chantrell, “Multiscale modelling of hysteresis in FePt/FeRh bilayer,” Phys. B: Condens. Matter 372, 328–331 (2006). https://doi.org/10.1016/j.physb.2005.10.078

    Article  CAS  Google Scholar 

  215. S. Koyama, H. Ogata, M. Konno, T. Goto, and K. Koike, “Reduction of coercivity in FePt–FeRh bilayer films by heating,” IEEE Trans. Magn. 41, 2854–2856 (2005). https://doi.org/10.1109/TMAG.2005.854681

    Article  CAS  Google Scholar 

Download references

Funding

The study was partially supported by the Ministry of Science and Higher Education of the Russian Federation (themes Potok no. АААА-А18-118020190112-8 and Splavy, no АААА-А19-119070890020-3). Works performed in OOO PMTiK were supported by the Skolkovo Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. I. Zverev.

Additional information

Translated by N. Kolchugina

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gimaev, R.R., Vaulin, A.A., Gubkin, A.F. et al. Peculiarities of Magnetic and Magnetocaloric Properties of Fe–Rh Alloys in the Range of Antiferromagnet–Ferromagnet Transition. Phys. Metals Metallogr. 121, 823–850 (2020). https://doi.org/10.1134/S0031918X20090045

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0031918X20090045

Keywords:

Navigation