Skip to main content

Advertisement

Log in

Activities and polymorphisms of MMP-2 and MMP-9, smoking, diabetes and risk of prostate cancer

  • Original Article
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Matrix metalloproteinases (MMPs) are a group of zinc dependent enzymes that are involved in tumor cell invasion and metastasis. The role of MMP-2 and -9 genetic polymorphism in different malignancies has been the subject of numerous studies. The present research has attempted to discover any positive correlation between MMP-2 and MMP-9 SNPs and prostate cancer (PCa) in patients with a history of either diabetes or smoking habits. 112 PCa-patients and 150 unrelated healthy-controls that matched for age and sex were selected for present case–control study. MMP-2 -1575G/A and MMP-9 -1562 C/T polymorphisms detected by PCR–RFLP, serum tissue inhibitors of metalloproteinases (TIMP-1 and TIMP-2), testosterone, prostate-specific antigen (PSA), free-prostate-specific-antigen (fPSA), and fPSA/PSA levels were detected by ELISA and enzyme assay, respectively. MMP-2 and MMP-9 activities were measured by gelatin-zymography. Covariates were considered as age, status of cigarette smoking, and a possible history of diabetes mellitus (DM). The frequency of -1575 MMP-2 A/A + A/G and -1562 MMP-9 C/T + T/T genotypes were higher in PCa-patients with DM (74.3%,p = 0.003) and with smoking habits (72.5%,p = 0.005). These genotypes were associated with the increased risk of prostate cancer in smokers (3.52-folds) and in individuals with history of DM (4.34-folds). A significant positive association was found between level of TIMPs (TIMP -1 and TIMP-2) and BMI in PCa-patients and also between testosterone levels and MMP-9 activity in healthy control subjects. For the first time, this study demonstrated that activities of MMP-2 -1575G/A and MMP-9 -1562C/T variants in association with smoking and diabetes are considered significant risk factors for PCa.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

  1. Ferlay J, Soerjomataram I, Dikshit R, Eser S, Mathers C, Rebelo M et al (2015) Cancer incidence and mortality worldwide: sources, methods and major patterns in GLOBOCAN 2012. Int J Cancer 136(5):E359–E386

    CAS  PubMed  Google Scholar 

  2. Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A (2018) Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA: A Cancer J Clin 68(6):394–424

    Google Scholar 

  3. Gandaglia G, Abdollah F, Schiffmann J, Trudeau V, Shariat SF, Kim SP, Perrotte P, Montorsi F, Briganti A, Trinh QD, Karakiewicz PI, Sun M (2014) Distribution of metastatic sites in patients with prostate cancer: a population-based analysis. Prostate 74(2):210–216

    PubMed  Google Scholar 

  4. Deryugina EI, Quigley JP (2006) Matrix metalloproteinases and tumor metastasis. Cancer Metastasis Rev 25(1):9–34

    CAS  PubMed  Google Scholar 

  5. Batra J, Soares AS, Mehner C, Radisky ES (2013) Matrix metalloproteinase-10/TIMP-2 structure and analyses define conserved core interactions and diverse exosite interactions in MMP/TIMP complexes. PLoS ONE 8(9):e75836

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Patterson ML, Atkinson SJ, Knauper V, Murphy G (2001) Specific collagenolysis by gelatinase A, MMP-2, is determined by the hemopexin domain and not the fibronectin-like domain. FEBS Lett 503(2–3):158–162

    CAS  PubMed  Google Scholar 

  7. Cicco CD, Ravasi L, Zorzino L, Sandri MT, Botteri E, Verweij F et al (2008) Circulating levels of VCAM and MMP-2 may help identify patients with more aggressive prostate cancer. Curr Cancer Drug Targets 8(3):199–206

    PubMed  Google Scholar 

  8. El-Chaer WK, Moraes CF, Nóbrega OT (2018) Diagnosis and prognosis of prostate cancer from circulating matrix metalloproteinases and inhibitors. J Aging Res. https://doi.org/10.1155/2018/7681039

    Article  PubMed  PubMed Central  Google Scholar 

  9. dos Reis ST, Villanova FE, Andrade PM, Pontes J Jr, de Sousa-Canavez JM, Sañudo A et al (2010) Matrix metalloproteinase-2 polymorphism is associated with prognosis in prostate cancer. UrolOncol 28:624–627

    Google Scholar 

  10. Schveigert D, Valuckas KP, Kovalcis V, Ulys A, Chvatovic G, Didziapetriene J (2013a) Significance of MMP-9 expression and MMP-9 polymorphism in prostate cancer. Tumori 99(4):523–529

    CAS  PubMed  Google Scholar 

  11. Raeeszadeh-Sarmazdeh M, Do LD, Hritz BG (2020) Metalloproteinases and their inhibitors: potential for the development of new therapeutics. Cells 9(5):1313

    PubMed Central  Google Scholar 

  12. Munhoz F, Godoy-Santos A, Santos M (2010) MMP-3 polymorphism: genetic marker in pathological processes. Mol Med Rep 3(5):735–740

    CAS  PubMed  Google Scholar 

  13. Yu C, Pan K, Xing D, Liang G, Tan W, Zhang L et al (2002) Correlation between a single nucleotide polymorphism in the matrix metalloproteinase-2 promoter and risk of lung cancer. Cancer Res 62(22):6430–6433

    CAS  PubMed  Google Scholar 

  14. Peng Z, Jia J, Gong W, Gao X, Ma P, Jin Z et al (2017) The association of matrix metalloproteinase-9 promoter polymorphisms with gastric cancer risk: a meta-analysis. Oncotarget 8(58):99024

    PubMed  PubMed Central  Google Scholar 

  15. Zhou Y, Yu C, Miao X, Wang Y, Tan W, Sun T et al (2005) Functional haplotypes in the promoter of matrix metalloproteinase-2 and lung cancer susceptibility. Carcinogenesis 26(6):1117–1121

    CAS  PubMed  Google Scholar 

  16. Grieu F, Li WQ, Iacopetta B (2004) Genetic polymorphisms in the MMP-2 and MMP-9 genes and breast cancer phenotype. Breast Cancer Res Treat 88(3):197–204

    CAS  PubMed  Google Scholar 

  17. Weng H, Zeng XT, Wang XH, Liu TZ, He DL (2017) Genetic association between matrix metalloproteinases gene polymorphisms and risk of prostate cancer: a meta-analysis. Front Physiol 8:975

    PubMed  PubMed Central  Google Scholar 

  18. Bahrehmand F, Vaisi-Raygani A, Kiani A, Rahimi Z, Tavilani H, Navabi S et al (2012) Matrix metalloproteinase-2 functional promoter polymorphism G1575A is associated with elevated circulatory MMP-2 levels and increased risk of cardiovascular disease in systemic lupus erythematosus patients. Lupus 21(6):616–624

    CAS  PubMed  Google Scholar 

  19. Zhang K, Chen X, Zhou J, Yang C, Zhang M, Chao M et al (2017) Association between MMP2-1306 C/T polymorphism and prostate cancer susceptibility: a meta-analysis based on 3906 subjects. Oncotarget 8(27):45020

    PubMed  PubMed Central  Google Scholar 

  20. Medina-González A, Eiró-Díaz N, Fernández-Gómez JM, Ovidio-González L, Jalón-Monzón A, Casas-Nebra J, Escaf-Barmadah S (2020) Comparative analysis of the expression of metalloproteases (MMP-2, MMP-9, MMP-11 and MMP-13) and the tissue inhibitor of metalloprotease 3 (TIMP-3) between previous negative biopsies and radical prostatectomies. ActasUrolEsp 44(2):78–85

    Google Scholar 

  21. Zhang X, Miao X, Xiong P, Yu C, Tan W, Qu S et al (2004) Association of functional polymorphisms in matrix metalloproteinase-2 (MMP-2) and MMP-9 genes with risk of gastric cancer in a Chinese population. Chin J Cancer 23(11):1233–1237

    CAS  Google Scholar 

  22. Sfar S, Saad H, Mosbah F, Gabbouj S, Chouchane L (2007) TSP1 and MMP9 genetic variants in sporadic prostate cancer. Cancer Genet Cytogenet 172(1):38–44

    CAS  PubMed  Google Scholar 

  23. Gann PH (2002) Risk factors for prostate cancer. Rev Urol 4(Suppl 5):S3–S10

    PubMed  PubMed Central  Google Scholar 

  24. Brawley OW (2012) Trends in Prostate Cancer in the United States. J Nat Cancer Inst 2012(45):152–156

    Google Scholar 

  25. Calle EE, Rodriguez C, Walker-Thurmond K, Thun MJ (2003) Overweight, obesity, and mortality from cancer in a prospectively studied cohort of US adults. N Engl J Med 348(17):1625–1638

    PubMed  Google Scholar 

  26. McGreevy KM, Hoel BD, Lipsitz SR, Hoel DG (2007) Impact ofnutrients on insulin-like growth factor-I, insulin-like growthfactor binding protein-3 and their ratio in African American and white males. Public Health Nutr 10(1):97–105

    PubMed  Google Scholar 

  27. Chen CB, Eskin M, Eurich DT, Majumdar SR, Johnson JA (2018) Metformin, Asian ethnicity and risk of prostate cancer in type 2 diabetes: a systematic review and meta-analysis. BMC Cancer 18(1):65

    PubMed  PubMed Central  Google Scholar 

  28. Crawley D, Chamberlain F, Garmo H, Rudman S, Zethelius B, Holmberg L et al (2018) A systematic review of the literature exploring the interplay between prostate cancer and type two diabetes mellitus. Ecancermedicalscience 12:802

    PubMed  PubMed Central  Google Scholar 

  29. Plaskon DF, Penson TL, Vaughan JL (2003) Stanford;cigarette smoking and risk of prostate cancer in middle-aged men. Cancer EpidemiolPrevBiomark 12(7):604–609

    CAS  Google Scholar 

  30. Lu X, Yamano Y, Takahashi H, Koda M, Fujiwara Y, Hisada A et al (2015) Associations between estrogen receptor genetic polymorphisms, smoking status, and prostate cancer risk: a case-control study in Japanese men. Environ Health Prev Med 20(5):332–337

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Fowler JE Jr., Whitmore WF Jr. (1981) The response of metastatic adenocarcinoma of the prostate to exogenous testosterone. J Urol 126(3):372–375

    PubMed  Google Scholar 

  32. Schweizer MT, Antonarakis ES, Wang H, Ajiboye AS, Spitz A, Cao H et al (2015) Effect of bipolar androgen therapy for asymptomatic men with castration-resistant prostate cancer: results from a pilot clinical study. SciTransl Med 7(269):269ra2

    Google Scholar 

  33. dos Reis ST et al (2010) Matrix metalloproteinase-2 polymorphism is associated with prognosis in prostate cancer. UrolOncol 28(6):624–627

    Google Scholar 

  34. Schveigert D et al (2013) Significance of MMP-9 expression and MMP-9 polymorphism in prostate cancer. Tumori J 99(4):523–529

    CAS  Google Scholar 

  35. Bultitude MF (2012) Campbell-walsh urology tenth edition. BjuInt 109(3):E10

    Google Scholar 

  36. Barakzai MA (2019) Prostatic adenocarcinoma: A grading from Gleason to the new grade-group system: a historical and critical review. Asian Pac J Cancer P: APJCP 20(3):661

    Google Scholar 

  37. World Health Organization (2006) Definition and diagnosis of diabetes mellitus and intermediate hyperglycaemia: report of a WHO/IDF consultation. World Health Organisation, Geneva

    Google Scholar 

  38. Saedi M, Vaisi-Raygani A, Khaghani S, Shariftabrizi A, Rezaie M, Pasalar P, Rahimi Z, Pourmotabbed T (2012) Matrix metalloproteinase-9 functional promoter polymorphism 1562C>T increased risk of early-onset coronary artery disease. MolBiol Rep 39(1):555–562

    CAS  Google Scholar 

  39. Vaisi-Raygani A, Rahimi Z, Entezami H, Kharrazi H, Bahrhemand F, Tavilani H et al (2008) Butyrylcholinesterase K variants increase the risk of coronary artery disease in the population of western Iran. Scand J Clin Lab Inv 68(2):123–129

    CAS  Google Scholar 

  40. Bahrehmand F, Vaisi-Raygani A, Kiani A, Rahimi Z, Tavilani H, Ardalan M, Vaisi-Raygani H, Shakiba E, Pourmotabbed T (2015) Matrix metalloproteinase 9 polymorphisms and systemic lupus erythematosus: correlation with systemic inflammatory markers and oxidative stress. Lupus 24(6):597–605

    CAS  PubMed  Google Scholar 

  41. Masuhara K, Nakai T, Yamaguchi K, Yamasaki S, Sasaguri Y (2002) Significant increases in serum and plasma concentrations of matrix metalloproteinases 3 and 9 in patients with rapidly destructive osteoarthritis of the hip. Arthritis Rheum 46(10):2625–2631

    CAS  PubMed  Google Scholar 

  42. Xie T, Dong B, Yan Y, Hu G, Xu Y (2016) Association between MMP-2 expression and prostate cancer: a meta-analysis. Biomed Rep 4(2):241–245

    PubMed  Google Scholar 

  43. Schveigert D, Valuckas KP, Kovalcis V, Ulys A, Chvatovic G, Didziapetriene J (2013b) Significance of MMP-9 expression and MMP-9 polymorphism in prostate cancer. Tumori J 99(4):523–529

    CAS  Google Scholar 

  44. Murray NP, Reyes E, Tapia P, Badínez L, Orellana N (2012) Differential expression of matrix metalloproteinase-2 expression in disseminated tumor cells and micrometastasis in bone marrow of patients with nonmetastatic and metastatic prostate cancer: theoretical considerations and clinical implications—an immunocytochemical study. Bone Marrow Res. https://doi.org/10.1155/2012/259351

    Article  PubMed  PubMed Central  Google Scholar 

  45. Maral S, Acar M, Balcik OS, Uctepe E, Hatipoglu OF, Akdeniz D et al (2015) Matrix metalloproteinases 2 and 9 polymorphism in patients with myeloproliferative diseases: a STROBE-compliant observational study. Medicine (Baltimore) 94(1):e732

    CAS  Google Scholar 

  46. Dong Z, Nemeth JA, Cher ML, Palmer KC, Bright RC, Fridman R (2001) Differential regulation of matrix metalloproteinase-9, tissue inhibitor of metalloproteinase 1 (TIMP 1) and TIMP 2 expression in cocultures of prostate cancer and stromal cells. Int J Cancer 93(4):507–515

    CAS  PubMed  Google Scholar 

  47. Wood M, Fudge K, Mohler J, Frost A, Garcia F, Wang M et al (1997) In situ hybridization studies of metalloproteinases 2 and 9 and TIMP-1 and TIMP-2 expression in human prostate cancer. ClinExp Metastasis 15(3):246–258

    CAS  Google Scholar 

  48. Dos Reis ST, Pontes J Jr, Villanova FE, de Andrade Borra PM, Antunes AA, Dall’oglio MF et al (2009) Genetic polymorphisms of matrix metalloproteinases: susceptibility and prognostic implications for prostate cancer. J Urol 181(5):2320–2325

    PubMed  Google Scholar 

  49. Srivastava P, Lone TA, Kapoor R, Mittal RD (2012) Association of Promoter Polymorphisms in MMP2 and TIMP2 with Prostate Cancer Susceptibility in North India. Arch Med Res 43(2):117–124

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This study was performed in partial fulfillment of requirements for an MSc degree in the Clinical Biochemistry, Kermanshah University of Medical Sciences, Kermanshah Iran (M. Kamankash). This study was funded by Kermanshah University of Medical Sciences, Kermanshah, Iran (Grant #96430). The Ethics Committee of Kermanshah University of Medical Sciences, Iran approved the present study (1.Research involving Human Participants 2. Informed consent ethical legal cod KUMS.Rec.1396.136)) (Grant #96430). All participants gave informed written consent for use of their samples and clinical data in research.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Asad Vaisi-Raygani or Tayebeh Pourmotabbed.

Ethics declarations

Conflict of interest

There are no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kiani, A., Kamankesh, M., Vaisi-Raygani, A. et al. Activities and polymorphisms of MMP-2 and MMP-9, smoking, diabetes and risk of prostate cancer. Mol Biol Rep 47, 9373–9383 (2020). https://doi.org/10.1007/s11033-020-05968-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-020-05968-5

Keywords

Navigation