Skip to main content

Advertisement

Log in

Structure and predictive metabolic contribution of intestinal microbiota of Longfin yellowtail (Seriola rivoliana) juveniles in aquaculture systems

  • Original Article
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Seriola rivoliana intestinal microbiota (IM) was characterised under aquaculture conditions through 16S rRNA amplicon sequencing. Specimens of 30 days after hatching (DAH) were maintained in three tanks and fed under the same environmental conditions for characterisation 15 days prior to sampling. Three fish were randomly taken from each tank; total DNA extraction of the gut microbiota was performed to characterise microbial composition and its metabolic prediction. The V3 hypervariable region of the 16S rRNA was amplified and sequenced with Illumina pair-end technology. The prokaryotic components in the S. rivoliana intestine were dominated mainly by the phyla Proteobacteria, Firmicutes, Bacteroidetes, Cyanobacteria and Actinobacteria. No significant differences in beta diversity were detected in the three samples (tanks). However in alpha diversity, they were detected in juveniles of the same cohort within the same group, as exemplified by enrichment of certain bacterial groups, mainly of the Clostridia class, which were specific in each fish within the same tank. The metabolic prediction analyses suggested that S. rivoliana IM contribute to the metabolism of amino acids, carbohydrates, lipids, and immune system. This study provides the first IM characterisation under rearing conditions of S. rivoliana—a species with broad economic potential—and contributes to novel information for potential use of probiotics in future trials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Kissinger KR, García-Ortega A, Trushenski JT (2016) Partial fish meal replacement by soy protein concentrate, squid and algal meals in low fish-oil diets containing Schizochytrium limacinum for longfin yellowtail Seriola rivoliana. Aquaculture 452:37–44. https://doi.org/10.1016/j.aquaculture.2015.10.022

    Article  CAS  Google Scholar 

  2. Sicuro B, Luzzana U (2016) The state of Seriola spp. other than yellowtail (S. quinqueradiata) farming in the world. Rev Fish Sci Aquac 24:314–325

    Google Scholar 

  3. Roo J, Fernández-Palacios H, Hernández-Cruz CM et al (2014) First results of spawning and larval rearing of longfin yellowtail Seriola rivoliana as a fast-growing candidate for European marine finfish aquaculture diversification. Aquac Res 45:689–700. https://doi.org/10.1111/are.12007

    Article  Google Scholar 

  4. Teles A, Salas-Leiva J, Alvarez-González CA et al (2017) Histological study of the gastrointestinal tract in longfin yellowtail (Seriola rivoliana) larvae. Fish Physiol Biochem 43:1613–1628. https://doi.org/10.1007/s10695-017-0397-5

    Article  CAS  PubMed  Google Scholar 

  5. Teles A, Salas-Leiva J, Alvarez-González CA, Tovar-Ramírez D (2018) Changes in digestive enzyme activities during early ontogeny of Seriola rivoliana. Fish Physiol Biochem 45(2):733–742

    PubMed  Google Scholar 

  6. Benitez-Hernández A, Jiménez-Bárcenas SPL, Sánchez-Gutiérrez EY et al (2017) Use of marine by-product meals in diets for juvenile longfin yellowtail Seriola rivoliana. Aquac Nutr 24:562–570. https://doi.org/10.1111/anu.12588

    Article  CAS  Google Scholar 

  7. Le DuJ, Tovar-Ramírez D, Núñez-Vázquez EJ et al (2017) Embryotoxic effects of dissolved okadaic acid on the development of Longfin yellowtail Seriola rivoliana. Aquat Toxicol 190:210–216. https://doi.org/10.1016/j.aquatox.2017.07.012

    Article  CAS  Google Scholar 

  8. Fernández-Palacios H, Schuchardt D, Roo J et al (2015) Spawn quality and GnRHa induction efficiency in longfin yellowtail (Seriola rivoliana) broodstock kept in captivity. Aquaculture 435:167–172

    Google Scholar 

  9. Mazón-Suástegui JM, Salas-Leiva J, Teles A, Tovar-Ramírez D (2018) Immune and antioxidant enzyme response of Longfin yellowtail (Seriola rivoliana) juveniles to ultra-diluted substances derived from phosphorus, silica and pathogenic vibrio. Homeopathy 108(01):043–053

    Google Scholar 

  10. Mesa-Rodríguez A, Hernández-Cruz CM, Betancor MB et al (2016) Bone development of the skull, pectoral and pelvic fins in Seriola rivoliana (Valenciennes, 1833) larvae. Fish Physiol Biochem 42:1777–1789. https://doi.org/10.1007/s10695-016-0257-8

    Article  CAS  PubMed  Google Scholar 

  11. Mesa-Rodríguez A, Hernández-Cruz CM, Socorro JA et al (2014) Skeletal development and mineralization pattern of the vertebral column, dorsal, anal and caudal fin complex in Seriola rivoliana (Valenciennes, 1833) larvae. J Aquac Res Dev. https://doi.org/10.4172/2155-9546.1000266

    Article  Google Scholar 

  12. Clements KD, Angert ER, Montgomery WL, Choat JH (2014) Intestinal microbiota in fishes: what’s known and what’s not. Mol Ecol 23:1891–1898. https://doi.org/10.1111/mec.12699

    Article  PubMed  Google Scholar 

  13. Montalban-Arques A, De Schryver P, Bossier P et al (2015) Selective manipulation of the gut microbiota improves immune status in vertebrates. Front Immunol 6:512. https://doi.org/10.3389/fimmu.2015.00512

    Article  PubMed  PubMed Central  Google Scholar 

  14. Tarnecki AM, Burgos FA, Ray CL, Arias CR (2017) Fish intestinal microbiome: diversity and symbiosis unravelled by metagenomics. J Appl Microbiol 123:2–17. https://doi.org/10.1111/jam.13415

    Article  CAS  PubMed  Google Scholar 

  15. Ghanbari M, Kneifel W, Domig KJ (2015) A new view of the fish gut microbiome: advances from next-generation sequencing. Aquaculture 448:464–475

    CAS  Google Scholar 

  16. Aguilera E, Yany G, Romero J (2013) Cultivable intestinal microbiota of yellowtail juveniles (Seriola lalandi) in an aquaculture system. Lat Am J Aquat Res 41:395–403

    Google Scholar 

  17. Soriano EL, Ramírez DT, Araujo DR et al (2018) Effect of temperature and dietary lipid proportion on gut microbiota in yellowtail kingfish Seriola lalandi juveniles. Aquaculture 497:269–277

    CAS  Google Scholar 

  18. Ramírez C, Romero J (2017a) The microbiome of Seriola lalandi of wild and aquaculture origin reveals differences in composition and potential function. Front Microbiol 8:1844

    PubMed  PubMed Central  Google Scholar 

  19. Wilkes Walburn J, Wemheuer B, Thomas T et al (2019) Diet and diet-associated bacteria shape early microbiome development in Yellowtail Kingfish (Seriola lalandi). Microb Biotechnol 12:275–288

    CAS  PubMed  Google Scholar 

  20. Ley RE, Hamady M, Lozupone C et al (2008) Evolution of mammals and their gut microbes. Science 320:1647–1651

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Sullam KE, Essinger SD, Lozupone CA et al (2012) Environmental and ecological factors that shape the gut bacterial communities of fish: a meta-analysis. Mol Ecol 21:3363–3378. https://doi.org/10.1111/j.1365-294X.2012.05552.x

    Article  PubMed  Google Scholar 

  22. Wong S, Rawls JF (2012) Intestinal microbiota composition in fishes is influenced by host ecology and environment. Mol Ecol 21:3100–3102

    PubMed  PubMed Central  Google Scholar 

  23. Bevins CL, Salzman NH (2011) The potter’s wheel: the host’s role in sculpting its microbiota. Cell Mol Life Sci 68:3675

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Navarrete P, Magne F, Araneda C et al (2012) PCR-TTGE analysis of 16S rRNA from rainbow trout (Oncorhynchus mykiss) gut microbiota reveals host-specific communities of active bacteria. PLoS ONE 7:e31335

    CAS  PubMed  PubMed Central  Google Scholar 

  25. David LA, Maurice CF, Carmody RN et al (2014) Diet rapidly and reproducibly alters the human gut microbiome. Nature 505:559

    CAS  PubMed  Google Scholar 

  26. Langille MGI, Zaneveld J, Caporaso JG et al (2013) Predictive functional profiling of microbial communities using 16S rRNA marker gene sequences. Nat Biotechnol 31:814

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Douglas GM, Maffei VJ, Zaneveld J et al (2019) PICRUSt2: an improved and extensible approach for metagenome inference. BioRxiv. https://doi.org/10.1101/672295

    Article  Google Scholar 

  28. Iwai S, Weinmaier T, Schmidt BL et al (2016) Piphillin: improved prediction of metagenomic content by direct inference from human microbiomes. PLoS ONE 11:e0166104

    PubMed  PubMed Central  Google Scholar 

  29. Wilkinson TJ, Huws SA, Edwards JE et al (2018) CowPI: a rumen microbiome focussed version of the PICRUSt functional inference software. Front Microbiol 9:1095

    PubMed  PubMed Central  Google Scholar 

  30. Jun S-R, Robeson MS, Hauser LJ et al (2015) PanFP: pangenome-based functional profiles for microbial communities. BMC Res Notes 8:479

    PubMed  PubMed Central  Google Scholar 

  31. Aßhauer KP, Wemheuer B, Daniel R, Meinicke P (2015) Tax4Fun: predicting functional profiles from metagenomic 16S rRNA data. Bioinformatics 31:2882–2884

    PubMed  PubMed Central  Google Scholar 

  32. Ortiz-Estrada ÁM, Gollas-Galván T, Martínez-Córdova LR, Martínez-Porchas M (2019) Predictive functional profiles using metagenomic 16S rRNA data: a novel approach to understanding the microbial ecology of aquaculture systems. Rev Aquac 11:234–245

    Google Scholar 

  33. Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning: a laboratory manual. Cold Spring Harbor Laboratory Press, Cold Spring Harbor

    Google Scholar 

  34. Huse SM, Dethlefsen L, Huber JA et al (2008) Exploring microbial diversity and taxonomy using SSU rRNA hypervariable tag sequencing. PLoS Genet 4:e1000255

    PubMed  PubMed Central  Google Scholar 

  35. Edgar RC (2013) UPARSE: highly accurate OTU sequences from microbial amplicon reads. Nat Methods 10:996

    CAS  PubMed  Google Scholar 

  36. Caporaso JG, Kuczynski J, Stombaugh J et al (2010) QIIME allows analysis of high-throughput community sequencing data. Nat Methods 7:335

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Comeau AM, Douglas GM, Langille MGI (2017) Microbiome helper: a custom and streamlined workflow for microbiome research. MSystems 2:e00127-e216

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Martin M (2011) Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet J 17:10

    Google Scholar 

  39. Zhang J, Kobert K, Flouri T, Stamatakis A (2013) PEAR: a fast and accurate Illumina Paired-End reAd mergeR. Bioinformatics 30:614–620

    PubMed  PubMed Central  Google Scholar 

  40. Schloss PD, Gevers D, Westcott SL (2011) Reducing the effects of PCR amplification and sequencing artifacts on 16S rRNA-based studies. PLoS ONE 6:e27310

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Lex A, Gehlenborg N, Strobelt H et al (2014) UpSet: visualization of intersecting sets. IEEE Trans Visual Comput Graphics 20:1983–1992

    Google Scholar 

  42. Hammer Ø, Harper DAT, Ryan PD (2001) Paleontological statistics software: package for education and data analysis. Palaeontol Electron 4:9

    Google Scholar 

  43. Vázquez-Baeza Y, Pirrung M, Gonzalez A, Knight R (2013) EMPeror: a tool for visualizing high-throughput microbial community data. Gigascience 2:16

    PubMed  PubMed Central  Google Scholar 

  44. Llewellyn MS, Boutin S, Hoseinifar SH, Derome N (2014) Teleost microbiomes: the state of the art in their characterization, manipulation and importance in aquaculture and fisheries. Front Microbiol 5:207

    PubMed  PubMed Central  Google Scholar 

  45. Xia JH, Lin G, Fu GH et al (2014) The intestinal microbiome of fish under starvation. BMC Genomics 15:266

    PubMed  PubMed Central  Google Scholar 

  46. Merrifield DL, Rodiles A (2015) The fish microbiome and its interactions with mucosal tissues. Mucosal health in aquaculture. Elsevier, Amsterdam, pp 273–295

    Google Scholar 

  47. Zhang J, Zheng H, Li Y et al (2016) Coexpression network analysis of the genes regulated by two types of resistance responses to powdery mildew in wheat. Sci Rep 6:23805

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Wang AR, Ran C, Ringø E, Zhou ZG (2017) Progress in fish gastrointestinal microbiota research. Rev Aquac 10(3):626–634

    Google Scholar 

  49. Ingerslev H-C, von Gersdorff JL, Strube ML et al (2014) The development of the gut microbiota in rainbow trout (Oncorhynchus mykiss) is affected by first feeding and diet type. Aquaculture 424:24–34

    Google Scholar 

  50. Gajardo K, Rodiles A, Kortner TM et al (2016) A high-resolution map of the gut microbiota in Atlantic salmon (Salmo salar): a basis for comparative gut microbial research. Sci Rep 6:30893

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Zarkasi KZ, Taylor RS, Abell GCJ et al (2016) Atlantic salmon (Salmo salar L.) gastrointestinal microbial community dynamics in relation to digesta properties and diet. Microb Ecol 71:589–603

    CAS  PubMed  Google Scholar 

  52. Kim D-H, Kim D (2013) Microbial diversity in the intestine of olive flounder (Paralichthys olivaceus). Aquaculture 414:103–108

    Google Scholar 

  53. Wong S, Waldrop T, Summerfelt S et al (2013) Aquacultured rainbow trout (Oncorhynchus mykiss) possess a large core intestinal microbiota that is resistant to variation in diet and rearing density. Appl Environ Microbiol 79:4974–4984

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Llewellyn MS, McGinnity P, Dionne M et al (2015) The biogeography of the atlantic salmon (Salmo salar) gut microbiome. ISME J 10:1280

    PubMed  PubMed Central  Google Scholar 

  55. Bledsoe JW, Peterson BC, Swanson KS, Small BC (2016) Ontogenetic characterization of the intestinal microbiota of channel catfish through 16S rRNA gene sequencing reveals insights on temporal shifts and the influence of environmental microbes. PLoS ONE 11:e0166379

    PubMed  PubMed Central  Google Scholar 

  56. Colston TJ, Jackson CR (2016) Microbiome evolution along divergent branches of the vertebrate tree of life: what is known and unknown. Mol Ecol 25:3776–3800

    PubMed  Google Scholar 

  57. Fortes-Silva R, Oliveira IE, Vieira VP et al (2016) Daily rhythms of locomotor activity and the influence of a light and dark cycle on gut microbiota species in tambaqui (Colossoma macropomum). Biol Rhythm Res 47:183–190

    CAS  Google Scholar 

  58. Ye L, Amberg J, Chapman D et al (2014) Fish gut microbiota analysis differentiates physiology and behavior of invasive Asian carp and indigenous American fish. ISME J 8:541

    CAS  PubMed  Google Scholar 

  59. Utami YD, Kuwahara H, Igai K et al (2018) Genome analyses of uncultured TG2/ZB3 bacteria in ‘Margulisbacteria’specifically attached to ectosymbiotic spirochetes of protists in the termite gut. ISME J 13(2):455–467

    PubMed  PubMed Central  Google Scholar 

  60. Utami YD, Kuwahara H, Murakami T et al (2018) Phylogenetic diversity and single-cell genome analysis of “Melainabacteria”, a non-photosynthetic cyanobacterial group, in the termite gut. Microbes Environ 33:50–57

    PubMed  PubMed Central  Google Scholar 

  61. Ramírez C, Romero J (2017b) Fine flounder (Paralichthys adspersus) microbiome showed important differences between wild and reared specimens. Front Microbiol 8:271

    PubMed  PubMed Central  Google Scholar 

  62. Austin B (2006) The bacterial microflora of fish, revised. Sci World J 6:931–945

    CAS  Google Scholar 

  63. Schmidt VT, Smith KF, Melvin DW, Amaral-Zettler LA (2015) Community assembly of a euryhaline fish microbiome during salinity acclimation. Mol Ecol 24:2537–2550

    PubMed  Google Scholar 

  64. Yan Q, Li J, Yu Y et al (2016) Environmental filtering decreases with fish development for the assembly of gut microbiota. Environ Microbiol 18:4739–4754

    CAS  PubMed  Google Scholar 

  65. Dehler CE, Secombes CJ, Martin SAM (2017) Environmental and physiological factors shape the gut microbiota of Atlantic salmon parr (Salmo salar L.). Aquaculture 467:149–157

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Fjellheim AJ, Playfoot KJ, Skjermo J, Vadstein O (2012) Inter-individual variation in the dominant intestinal microbiota of reared Atlantic cod (Gadus morhua L.) larvae. Aquac Res 43:1499–1508

    Google Scholar 

  67. Gatesoupe F, Covès D, Ortega A et al (2013) A spatiotemporal study of bacterial community profiles associated with Atlantic bluefin tuna larvae, Thunnus thynnus L., in three Mediterranean hatcheries. Aquac Res 44:1511–1523

    CAS  Google Scholar 

  68. Giatsis C, Sipkema D, Smidt H et al (2014) The colonization dynamics of the gut microbiota in tilapia larvae. PLoS ONE 9:e103641

    PubMed  PubMed Central  Google Scholar 

  69. Li XM, Zhu YJ, Yan QY et al (2014) Do the intestinal microbiotas differ between paddlefish (Polyodon spathala) and bighead carp (Aristichthys nobilis) reared in the same pond? J Appl Microbiol 117:1245–1252

    CAS  PubMed  Google Scholar 

  70. Li T, Long M, Gatesoupe F-J et al (2015) Comparative analysis of the intestinal bacterial communities in different species of carp by pyrosequencing. Microb Ecol 69:25–36

    CAS  PubMed  Google Scholar 

  71. Datta MS, Almada AA, Baumgartner MF et al (2018) Inter-individual variability in copepod microbiomes reveals bacterial networks linked to host physiology. ISME J 12(9):2103–2113

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Tracy BP, Jones SW, Fast AG et al (2012) Clostridia: the importance of their exceptional substrate and metabolite diversity for biofuel and biorefinery applications. Curr Opin Biotechnol 23:364–381

    CAS  PubMed  Google Scholar 

  73. Clements KD, Pasch IBY, Moran D, Turner SJ (2007) Clostridia dominate 16S rRNA gene libraries prepared from the hindgut of temperate marine herbivorous fishes. Mar Biol 150:1431–1440

    CAS  Google Scholar 

  74. Eichmiller JJ, Hamilton MJ, Staley C et al (2016) Environment shapes the fecal microbiome of invasive carp species. Microbiome 4:44

    PubMed  PubMed Central  Google Scholar 

  75. Booijink CCGM, El-Aidy S, Rajilić-Stojanović M et al (2010) High temporal and inter-individual variation detected in the human ileal microbiota. Environ Microbiol 12:3213–3227

    CAS  PubMed  Google Scholar 

  76. Mardinoglu A, Shoaie S, Bergentall M et al (2015) The gut microbiota modulates host amino acid and glutathione metabolism in mice. Mol Syst Biol 11:834

    PubMed  PubMed Central  Google Scholar 

  77. Ray AK, Ghosh K, Ringø E (2012) Enzyme-producing bacteria isolated from fish gut: a review. Aquac Nutr 18:465–492

    CAS  Google Scholar 

  78. Wang G, Huang S, Wang Y et al (2019) Bridging intestinal immunity and gut microbiota by metabolites. Cell Mol Life Sci 76:3917–3937

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Nicholson JK, Holmes E, Kinross J et al (2012) Host-gut microbiota metabolic interactions. Science 336(6086):1262–1267

    CAS  PubMed  Google Scholar 

  80. Lin L, Zhang J (2017) Role of intestinal microbiota and metabolites on gut homeostasis and human diseases. BMC Immunol 18:2

    PubMed  PubMed Central  Google Scholar 

  81. Laing KJ, Purcell MK, Winton JR, Hansen JD (2008) A genomic view of the NOD-like receptor family in teleost fish: identification of a novel NLR subfamily in zebrafish. BMC Evol Biol 8:42

    PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

To CIBNOR staff for their technical support: Patricia Hinojosa Baltazar, Ángel Hernández-Contreras, Marcos Quiñones and Milagro García. To Kampachi Farms for providing fertilized eggs for the study. The authors want to especially thank D.E. Salas-Leiva from the Centre for Comparative Genomics and Evolutionary Bioinformatics (CGEB), for her insightful recommendations for data analyses; D. Fischer for editorial services in English.

Funding

To Sectoral Fund for Research and Education of México, projects CB-CONACyT No. 258282 and No. 157763 under the academic responsibilities of J.M.S. and D.T.R., respectively. A.T. and J.S.L., received doctoral (CONACyT 335728) and post-doctoral (CIB-PRY-20256) fellowships, respectively.

Author information

Authors and Affiliations

Authors

Contributions

JSL, JMS and DTR, conceived and designed research; JSL and AT, conducted experiments; JSL, performed bioinformatics analysis; JSL and DTR, contributed reagents or analytical tools; JSL, JMS and DTR, analysed data; JSL and DTR, wrote the manuscript; All authors read and approved the manuscript.

Corresponding author

Correspondence to Dariel Tovar-Ramírez.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Ethical approval

The experiment complied with the Guidelines of the European Union Council (2010/63/EU) and the Mexican Government (NOM-062—ZOO-1999) for the production, care, and use of experimental animals, and with the ARRIVE guidelines.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Salas-Leiva, J., Mazón-Suástegui, J.M., Teles, A. et al. Structure and predictive metabolic contribution of intestinal microbiota of Longfin yellowtail (Seriola rivoliana) juveniles in aquaculture systems. Mol Biol Rep 47, 9627–9636 (2020). https://doi.org/10.1007/s11033-020-05970-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-020-05970-x

Keywords

Navigation