Skip to main content
Log in

Parameters of the Infrasonic Signal Generated by the Kamchatka Meteoroid

  • DYNAMICS AND PHYSICS OF BODIES OF THE SOLAR SYSTEM
  • Published:
Kinematics and Physics of Celestial Bodies Aims and scope Submit manuscript

Abstract

The subject of this study is the infrasonic signal generated by a high-speed (32 km/s), high-energy (173 kt TNT), and large-sized (9.4 m) celestial body, later called the Kamchatka meteoroid, which entered the terrestrial atmosphere and exploded on December 18, 2018. The focus of the study is the parameters of the infrasonic signal launched by the Kamchatka meteoroid. The study is based on the data on temporal dependences of pressure in the infrasonic wave collected by the I53US, I30JP, I59US, I46RU, I57US, and MAAG2 infrasonic stations included in the International Monitoring System (IMS) set up by the Comprehensive Nuclear-Test-Ban Treaty Organization (CTBTO). The measurement data initially recorded on a relative scale were converted into absolute values. The temporal dependences of the infrasonic wave pressure were then filtered in the 1–40-s period range and were subsequently subjected to system spectral analysis that included the mutually complementary short-time Fourier transform, adaptive Fourier transform, and the wavelet transform with the Morlet wavelet as the basis function. As a result, it was found that the infrasonic signal amplitude exhibits quite a rapid decrease with distance between an infrasonic station and the meteoroid’s explosion site. The time delay of the infrasonic signal shows an increase with distance between the celestial body explosion and the site of signal detection. The signal celerity exhibits a dependence on the distance and the path orientation; it is estimated to be in the range of 269–308 m/s. The infrasonic signal duration shows virtually no dependence on the distance from the detonation point to an infrasonic station. The infrasonic signal spectra have a wide bandwidth with periods from ∼5 to ∼40 s. At the same time, the greatest energy falls within the isolated periods of 12–15 s and 28–33 s. The scatter diagrams and regressions for the infrasound main parameters were plotted. The celestial body’s kinetic energy (179 kt TNT) and acoustic efficiency (∼4%) were estimated from the prevailing infrasonic period.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.
Fig. 13.
Fig. 14.
Fig. 15.
Fig. 16.
Fig. 17.

Similar content being viewed by others

REFERENCES

  1. V. V. Adushkin, A. P. Popova, Yu. S. Rybnov, V. N. Kudryavtsev, A. L. Mal’tsev, and V. A. Kharlamov, “Geophysical effects of the Vitim bolide,” Dokl. Earth Sci. 397, 861–864 (2004).

    Google Scholar 

  2. E. E. Gossard and W. H. Hooke, Waves in the Atmosphere: Atmospheric Infrasound and Gravity Waves, Their Generation and Propagation (Developments in Atmospheric Science) (Elsevier, Amsterdam, 1975; Mir, Moscow, 1978).

  3. V. V. Emel’yanenko, O. P. Popova, N. N. Chugai, M. A. Shelyakov, Yu. V. Pakhomov, B. M. Shustov, V. V. Shuvalov, E. E. Biryukov, Yu. S. Rybnov, M. Ya. Marov, L. V. Rykhlova, S. A. Naroenkov, A. P. Kartashova, V. A. Kharlamov, and I. A. Trubetskaya, “Astronomical and physical aspects of the Chelyabinsk event (February 15, 2013),” Sol. Syst. Res. 47, 240–254 (2013).

    Article  ADS  Google Scholar 

  4. O. V. Lazorenko and L. F. Chernogor, “System spectral analysis of infrasonic signal generated by Chelyabinsk meteoroid,” Radioelectron. Commun. Syst. 60, 331–338 (2017).

    Article  Google Scholar 

  5. O. P. Popova, V. V. Shuvalov, Yu. S. Rybnov, V. A. Kharlamov, D. O. Glazachev, V. V. Emel’yanenko, A. P. Kartashova, and P. Jenniskens, “Chelyabinsk meteoroid parameters: Data analysis,” in Dynamic Processes in Geospheres: Collection of Scientific Papers of the Institute of Geosphere Dynamics of the Russian Academy of Sciences (Geos, Moscow, 2013), Vol. 4, pp. 10–21 [in Russian].

    Google Scholar 

  6. Yu. S. Rybnov, O. P. Popova, V. A. Kharlamov, A. V. Solov’ev, Yu. S. Rusakov, A. G. Glukhov, E. Silber, E. D. Podobnaya, and D. V. Surkova, “Energy estimation of Chelyabinsk bolide using infrasound measurements,” in Dynamic Processes in Geospheres: Collection of Scientific Papers of the Institute of Geosphere Dynamics of the Russian Academy of Sciences (Geos, Moscow, 2013), Vol. 4, pp. 21–32 [in Russian].

    Google Scholar 

  7. Yu. S. Rybnov, O. P. Popova, and V. A. Kharlamov, “The energy estimation of the Chelyabinsk meteoroid by the power spectra of long-periods oscillations of the atmospheric pressure,” in Dynamic Processes in Geospheres: Collection of Scientific Papers of the Institute of Geosphere Dynamics of the Russian Academy of Sciences (Geos, Moscow, 2014), Vol. 5, pp. 78–86 [in Russian].

    Google Scholar 

  8. A. G. Sorokin, “Infrasonic radiation of Chelyabinsk meteoroid,” Soln.-Zemn. Fiz., No. 24, 58–63 (2013);

  9. A. G. Sorokin, “On infrasonic radiation of Chelyabinsk meteoroid,” in Radio Waves Propagation (Proc. 24th All-Russian Sci Conf., Irkutsk, Russia, 29 Jun. 29 –Jul. 5,2014), Ed. by V. I. Kurkin (Sib. Otd. Ross. Akad. Nauk, Irkutsk, 2014), pp. 242–245.

  10. L. F. Chernogor, “Advanced methods of spectral analysis of quasiperiodic wave-like processes in the ionosphere: Specific features and experimental results,” Geomagn. Aeron. (Engl. Transl.) 48, 652–673 (2008).

  11. L. F. Chernogor, “Oscillations of the geomagnetic field caused by the flight of Vitim bolide on September 24, 2002,” Geomagn. Aeron. (Engl. Transl.) 51, 116–130 (2011).

  12. L. F. Chernogor, Physics and Ecology of Disasters (Khark. Nats. Univ. im. V. N. Karazina, Kharkiv, 2012) [in Russian].

  13. L. F. Chernogor, “Chelyabinsk meteoroid acoustic effects,” Radiofiz. Radioastron. 22, 53–66 (2017) [in Russian].

    Google Scholar 

  14. L. F. Chernogor, “Parameters of acoustic signals generated by the atmospheric meteoroid explosion over Romania on January 7, 2015,” Sol. Syst. Res. 52, 206–222 (2018).

    Article  ADS  Google Scholar 

  15. L. F. Chernogor and A. I. Lyashchuk, “Parameters of infrasonic waves generated by the Chelyabinsk meteoroid on February 15, 2013,” Kinematics Phys. Celestial Bodies 33, 79–87 (2017).

    Article  ADS  Google Scholar 

  16. L. F. Chernogor and A. I. Lyashchuk, “Infrasound observations of the bolide explosion over Romania on January 7, 2015,” Kinematics Phys. Celestial Bodies 33, 276–290 (2017).

    Article  ADS  Google Scholar 

  17. L. F. Chernogor and N. B. Shevelev, “Infrasound wave generated by the Tunguska celestial body: Amplitude dependence on distance,” Radiofiz. Radioastron. 23, 94–103 (2018) [in Russian].

    Google Scholar 

  18. L. F. Chernogor and N. B. Shevelev, “Parameters of the infrasound signal generated by a meteoroid over Indonesia on October 8, 2009,” Kinematics Phys. Celestial Bodies 34, 147–160 (2018).

    Article  ADS  Google Scholar 

  19. L. F. Chernogor and N. B. Shevelev, “Characteristics of the infrasound signal generated by Chelyabinsk celestial body: Global statistics,” Radiofiz. Radioastron. 23, 24–35 (2018) [in Russian].

    Google Scholar 

  20. L. F. Chornogor and M. B. Shevelev, “Characteristics of infrasonic signal generated by the Lipetsk meteoroid: Statistical analysis,” Kinematics Phys. Celestial Bodies 36 (4), 186–194 (2020).

    Article  ADS  Google Scholar 

  21. M. I. Avramenko, I. V. Glazyrin, G. V. Ionov, and A. V. Karpeev, “Simulation of the airwave caused by the Chelyabinsk superbolide,” J. Geophys. Res.: Atmos. 119, 7035–7050 (2014).

    Article  ADS  Google Scholar 

  22. P. G. Brown, P. Kalenda, D. O. ReVelle, and J. Borovička, “The Morávka meteorite fall: 2. Interpretation of infrasonic and seismic data,” Meteorit. Planet. Sci. 38, 989–1003 (2003).

    Article  ADS  Google Scholar 

  23. D. R. Christie and P. Campus, “The IMS infrasound network: Design and establishment of infrasound stations,” in Infrasound Monitoring for Atmospheric Studies, Ed. by A. Le Pichon, E. Blanc, and A. Hauchecorne (Springer-Verlag, Dordrecht, 2010), pp. 27–73.

    Google Scholar 

  24. Infrasound Monitoring for Atmospheric Studies, Ed. by A. Le Pichon, E. Blanc, and A. Hauchecorne (Springer-Verlag, Dordrecht, 2010). https://doi.org/10.1007/978-1-4020-9508-5

    Book  Google Scholar 

  25. Infrasound Monitoring for Atmospheric Studies, Ed. by A. Le Pichon, E. Blanc, and A. Hauchecorne (Springer-Verlag, Switzerland, 2019). https://doi.org/10.1007/978-1-4020-9508-5

    Book  Google Scholar 

  26. A. Le Pichon, L. Ceranna, C. Pilger, P. Mialle, D. Brown, P. Herry, and N. Brachet, “The 2013 Russian fireball largest ever detected by CTBTO infrasound sensors,” Geophys. Res. Lett. 40, 3732–3737. https://doi.org/10.1002/grl.50619

  27. J. Oberst, S. Molau, D. Heinlein, C. Gritzner, M. Schindler, P. Spurny, Z. Ceplecha, J. Rendtel, and H. Betlem, “The "European Fireball Network”: Current status and future prospects,” Meteorit. Planet. Sci. 33, 49–56 (1998).

    Article  ADS  Google Scholar 

  28. T. Ott, E. Drolshagen, D. Koschny, P. Mialle, C. Pilger, J. Vaubaillon, G. Drolshagen, and B. Poppe, “Combination of infrasound signals and complementary data for the analysis of bright fireballs,” Planet. Space Sci. 179, 104715 (2019). https://doi.org/10.1016/j.pss.2019.104715

    Article  Google Scholar 

  29. O. P. Popova, P. Jenniskens, V. Emelyanenko, A. Kartashova, E. Biryukov, S. Khaibrakhmanov, V. Shuvalov, Y. Rybnov, A. Dudorov, V. I. Grokhovsky, D. D. Badyukov, Q.-Z. Yin, P. S. Gural, J. Albers, M. Granvik, L. G. Evers, J. Kuiper, V. Harlamov, A. Solovyov, Y. S. Rusakov, S. Korotkiy, I. Serdyuk, A. V. Korochantsev, M. Y. Larionov, D. Glazachev, A. E. Mayer, G. Gisler, S. V. Gladkovsky, J. Wimpenny, M. E. Sanborn, A. Yamakawa, K. L. Verosub, D. J. Rowland, S. Roeske, N. W. Botto, J. M. Friedrich, M. E. Zolensky, L. Le, D. Ross, K. Ziegler, T. Nakamura, I. Ahn, J. I. Lee, Q. Zhou, X. H. Li, Q. L. Li, Y. Liu, G.-Q. Tang, T. Hiroi, D. Sears, I. A. Weinstein, A. S. Vokhmintsev, A. V. Ishchenko, P. Schmitt-Kopplin, N. Hertkorn, K. Nagao, M. K. Haba, M. Komatsu, and T. Mikouchi, “Chelyabinsk airburst, damage assessment, meteorite, and characterization,” Science 342, 1069–1073 (2013). https://doi.org/10.1126/science.1242642

    Article  ADS  Google Scholar 

  30. O. P. Popova, P. Jenniskens, V. Emelyanenko, A. Kartashova, E. Biryukov, S. Khaibrakhmanov, V. Shuvalov, Y. Rybnov, A. Dudorov, V. I. Grokhovsky, D. D. Badyukov, Q.-Z. Yin, P. S. Gural, J. Albers, M. Granvik, L. G. Evers, J. Kuiper, V. Harlamov, A. Solovyov, Y. S. Rusakov, S. Korotkiy, I. Serdyuk, A. V. Korochantsev, M. Y. Larionov, D. Glazachev, A. E. Mayer, G. Gisler, S. V. Gladkovsky, J. Wimpenny, M. E. Sanborn, A. Yamakawa, K. L. Verosub, D. J. Rowland, S. Roeske, N. W. Botto, J. M. Friedrich, M. E. Zolensky, L. Le, D. Ross, K. Ziegler, T. Nakamura, I. Ahn, J. I. Lee, Q. Zhou, X. H. Li, Q. L. Li, Y. Liu, G.-Q. Tang, T. Hiroi, D. Sears, I. A. Weinstein, A. S. Vokhmintsev, A. V. Ishchenko, P. Schmitt-Kopplin, N. Hertkorn, K. Nagao, M. K. Haba, M. Komatsu, and T. Mikouchi, “Supplementary materials for Chelyabinsk airburst, damage assessment, meteorite, and characterization,” Science 342 (2013). https://www.sciencemag.org/cgi/content/ full/science.1242642/DC1. Accessed January 30, 2017.

  31. D. O. ReVelle, “Historical detection of atmospheric impacts by large bolides using acoustic-gravity waves,” Ann. N. Y. Acad. Sci. 822, 284–302 (1997). https://doi.org/10.1111/j.1749-6632.1997.tb48347.x

    Article  ADS  Google Scholar 

  32. E. A. Silber, A. L. Pichon, and P. G. Brown, “Infrasonic detection of a near-Earth object impact over Indonesia on 8 October 2009,” Geophys. Res. Lett. 38, L12201 (2011). https://doi.org/10.1029/2011GL047633

    Article  ADS  Google Scholar 

Download references

ACKNOWLEDGMENTS

We thank the staff of the International Monitoring System of the Comprehensive Nuclear-Test-Ban Treaty Organization for providing the initial observational data.

Funding

The work of L.F. Chernogor and M.B. Shevelev was funded as part of the state budget research activity of institutions of the Ministry of Education and Science of Ukraine, state registration no. 0119U002538. L.F. Chernogor and M.B. Shevelev also thanks the National Research Foundation of Ukraine for financial support (project 2020.02/0015 “Theoretical and experimental studies of global disturbances from natural and technogenic sources in the Earth-atmosphere-ionosphere system”).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. F. Chernogor.

Additional information

Translated by M. Chubarova

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chernogor, L.F., Liashchuk, O.I. & Shevelev, M.B. Parameters of the Infrasonic Signal Generated by the Kamchatka Meteoroid. Kinemat. Phys. Celest. Bodies 36, 222–237 (2020). https://doi.org/10.3103/S0884591320050037

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S0884591320050037

Navigation