Skip to main content
Log in

Fractal Solitons, Arbitrary Function Solutions, Exact Periodic Wave and Breathers for a Nonlinear Partial Differential Equation by Using Bilinear Neural Network Method

  • Published:
Journal of Systems Science and Complexity Aims and scope Submit manuscript

Abstract

This paper extends a method, called bilinear neural network method (BNNM), to solve exact solutions to nonlinear partial differential equation. New, test functions are constructed by using this method. These test functions are composed of specific activation functions of single-layer model, specific activation functions of “2-2” model and arbitrary functions of “2-2-3” model. By means of the BNNM, nineteen sets of exact analytical solutions and twenty-four arbitrary function solutions of the dimensionally reduced p-gBKP equation are obtained via symbolic computation with the help of Maple. The fractal solitons waves are obtained by choosing appropriate values and the self-similar characteristics of these waves are observed by reducing the observation range and amplifying the partial picture. By giving a specific activation function in the single layer neural network model, exact periodic waves and breathers are obtained. Via various three-dimensional plots, contour plots and density plots, the evolution characteristic of these waves are exhibited.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Liu Y P, Liao S J, and Li Z B, Symbolic computation of strongly nonlinear periodic oscillations, Journal of Symbolic Computation, 2013, 55: 72–95.

    Article  MathSciNet  Google Scholar 

  2. Feng R Y and Gao X S, Rational general solutions of algebraic ordinary differential equations, Proceedings of the 2004 International Symposium on Symbolic and Algebraic Computation (ISSAC’04), Ed. by Gutierrez J, ACM Press, New York, 2004, 155–162.

    Chapter  Google Scholar 

  3. Feng R Y and Gao X S, A polynomial time algorithm for finding rational general solutions of first order autonomous ODEs, Journal of Symbolic Computation, 2006, 41: 739–762.

    Article  MathSciNet  Google Scholar 

  4. Feng R Y, Gao X S, and Huang Z Y, Rational solutions of ordinary difference equations, Journal of Symbolic Computation, 2008, 43: 746–763.

    Article  MathSciNet  Google Scholar 

  5. Franz W, The algebro-geometric method for solving algebraic differential equations — A survey, Journal of Systems Science & Complexity, 2019, 32(1): 256–270.

    Article  MathSciNet  Google Scholar 

  6. Zhang R F and Bilige S D, Bilinear neural network method to obtain the exact analytical solutions of nonlinear partial differential equations and its application to p-gBKP equatuon, Nonlinear Dyn., 2019, 95: 3041–3048.

    Article  Google Scholar 

  7. Ma W X, Bilinear equations, Bell polynomials and linear superposition principle, J. Phys. Conf. Ser., 2013, 411: 012021.

    Article  Google Scholar 

  8. Ma W X, Yong X L, and Zhang H Q, Diversity of interaction solutions to the (2+1)-dimensional Ito equation, Comput. Math. Appl., 2018, 75: 289–295.

    Article  MathSciNet  Google Scholar 

  9. Lü J Q and Bilige S D, Diversity of interaction solutions to the (3+1)-dimensional Kadomtsev-Petviashvili-Boussinesq-like equation, Mod. Phys. Lett. B, 2018, 32: 1850311.

    Article  MathSciNet  Google Scholar 

  10. Lü J Q, Bilige S D, and Gao X Q, Abundant lump solution and interaction phenomenon of (3+1)-dimensional generalized Kadomtsev-Petviashvili equation, Int. J. Nonlinear Sci. Num. Sim., 2019, 20(1): 33–40.

    Article  MathSciNet  Google Scholar 

  11. Lü J Q and Bilige S D, The study of lump solution and interaction phenomenon to (2+1)-dimensional Potential Kadomstev-Petviashvili equation, Anal. Math. Phys., 2019, 9(3): 1497–1509.

    Article  MathSciNet  Google Scholar 

  12. Lü J Q, Bilige S D, and Chaolu T, The study of lump solution and interaction phenomenon to (2+1)-dimensional generalized fifth-order KdV equation, Nonlinear Dyn., 2018, 91: 1669–1676.

    Article  Google Scholar 

  13. Lü J Q and Bilige S D, Lump solutions of a (2+1)-dimensional bSK equation, Nonlinear Dyn., 2017, 90: 2119–2124.

    Article  MathSciNet  Google Scholar 

  14. Zhang R F and Bilige S D, New interaction phenomenon and the periodic lump wave for the Jimbo-Miwa equation, Mod. Phys. Lett. B, 2019, 33: p1950067.

    Article  MathSciNet  Google Scholar 

  15. Ma W X, Lump and interaction solutions to linear (4+1)-dimensional PDEs, Acta Mathematica Scientia, 2019, 39B(2): 498–508.

    Article  MathSciNet  Google Scholar 

  16. Lü X, Wang J P, Lin F H, et al., Lump dynamics of a generalized two-dimensional Boussinesq equation in shallow water, Nonlinear Dyn., 2018, 91: 1249–1259.

    Article  Google Scholar 

  17. Yin Y H, Ma W X, Liu J G, et al., Diversity of exact solutions to a (3+1)-dimensional nonlinear evolution equation and its reduction, Comput. Math. Appl., 2018, 76(6): 1275–1283.

    Article  MathSciNet  Google Scholar 

  18. Lin F H, Wang J P, Zhou X W, et al., Observation of interaction phenomena for two dimensionally reduced nonlinear models, Nonlinear Dyn., 2018, 94: 2643–2654.

    Article  Google Scholar 

  19. Hua Y F, Guo B L, Ma W X, et al., Interaction behavior associated with a generalized (2+1)-dimensional Hirota bilinear equation for nonlinear waves, Appl. Math. Modell., 2019, 74: 184–198.

    Article  MathSciNet  Google Scholar 

  20. Zhang Y, Dong H H, Zhang X E, et al., Rational solutions and lump solutions to the generalized (3+1)-dimensional Shallow Water-like equation, Comput. Math. Appl., 2017, 73: 246–252.

    Article  MathSciNet  Google Scholar 

  21. Dong M J, Tian S F, Wang X B, et al., Lump-type solutions and interaction solutions in the (3+1)-dimensional potential Yu-Toda-Sasa-Fukuyama equation, Anal. Math. Phys., 2019, 9: 1511–1523.

    Article  MathSciNet  Google Scholar 

  22. Liu J G, Lump-type solutions and interaction solutions for the (2+1)-dimensional asymmetrical Nizhnik-Novikov-Veselov equation, Eur. Phys. J. Plus., 2019, 134: 56–61.

    Article  Google Scholar 

  23. Fang T, Gao C N, Wang H, et al., Lump-type solution, rogue wave, fusion and fission phenomena for the (2+1)-dimensional Caudrey-Dodd-Gibbon-Kotera-Sawada equation, Modern Physics Letters B, 2019, 33(18): 1950198.

    Article  MathSciNet  Google Scholar 

  24. Yue Y F, Huang L L, and Chen Y, Localized waves and interaction solutions to an extended (3+1)-dimensional Jimbo-Miwa equation, Appl. Math. Lett., 2019, 89: 70–77.

    Article  MathSciNet  Google Scholar 

  25. Lan Z Z, Rogue wave solutions for a coupled nonlinear Schrödinger equation in the birefringent optical fiber, Appl. Math. Lett., 2019, 98: 128–134.

    Article  MathSciNet  Google Scholar 

  26. Zhang X E and Chen Y, General high-order rogue waves to nonlinear Schrödinger-Boussinesq equation with the dynamical analysis, Nonlinear Dyn., 2018, 93: 2169–2184.

    Article  Google Scholar 

  27. Wu X Y, Tian B, Chai H P, et al., Rogue waves and lump solutions for a (3+1)-dimensional generalized B-type Kadomtsev Petviashvili equation in fluid mechanics, Mod. Phys. Lett. B, 2017, 31(22): 1750122.

    Article  MathSciNet  Google Scholar 

  28. Lü Z S and Chen Y N, Construction of rogue wave and lump solutions for nonlinear evolution equations, Eur. Phys. J. B., 2015, 88(7): 187–191.

    Article  MathSciNet  Google Scholar 

  29. Lü Z S and Chen Y N, Constructing rogue wave prototypes of nonlinear evolution equations via an extended tanh method, Chaos, Solitons Fractals, 2015, 81: 218–223.

    Article  MathSciNet  Google Scholar 

  30. Liu J G, Lump-type solutions and interaction solutions for the (2+1)-dimensional generalized fifth-order KdV equation, Appl. Math. Lett., 2018, 86: 36–41.

    Article  MathSciNet  Google Scholar 

  31. Wazwaz A M, Liu W, and Zhang X X, High-order breathers, lumps, and semirational solutions to the (2+1)-dimensional Hirota-Satsuma-Ito equation, Phys. Scr., 2019, 94: 075203.

    Article  Google Scholar 

  32. Zhang R F, Bilige S D, Fang T, et al., New periodic wave, cross-kink wave and the interaction phenomenon for the Jimbo-Miwa-like equation, Comput. Math. Appl., 2019, 78: 754–764.

    Article  MathSciNet  Google Scholar 

  33. Ma W X, Qin Z Y, and Lü X, Lump solutions to dimensionally reduced p-gKP and p-gBKP equations, Nonlinear Dyn., 2016, 84: 923–931.

    Article  MathSciNet  Google Scholar 

  34. Zhang R F, Bilige S D, Bai Y X, et al., Interaction phenomenon to dimensionally reduced p-gBKP equation, Mod. Phys. Lett. B, 2018, 32: 1850074.

    Article  MathSciNet  Google Scholar 

  35. Kaur L and Wazwaz A M, Lump, breather and solitary wave solutions to new reduced form of the generalized BKP equation, International Journal of Numerical Methods for Heat and Fluid Flow, 2019, 29(2): 569–579.

    Article  Google Scholar 

  36. Ma W X, Generalized bilinear differential equations, Studies in Nonlinear Sciences, 2011, 2(4): 140–144.

    Google Scholar 

  37. Zhao Z L, Chen Y, and Han B, Lump soliton, mixed lump stripe and periodic lump solutions of a (2+1)-dimensional asymmetrical Nizhnik-Novikov-Veselov equation, Mod. Phys. Lett. B, 2017, 31: 1750157.

    Article  MathSciNet  Google Scholar 

  38. Hu C C, Tian B, Yin H M, et al., Dark breather waves, dark lump waves and lump wave-soliton interactions for a (3+1)-dimensional generalized Kadomtsev-Petviashvili equation in a fluid, Comput. Math. Appl., 2019, 78: 166–177.

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sudao Bilige.

Additional information

This research was supported by the National Natural Science Foundation of China under Grant Nos. 11661060, 11571008, the Program for Young Talents of Science and Technology in Universities of Inner Mongolia Autonomous Region under Grant No. NJYT-20-A06 and the Natural Science Foundation of Inner Mongolia Autonomous Region of China under Grant No. 2018LH01013.

This paper was recommended for publication by Editor-in-Chief GAO Xiao-Shan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, R., Bilige, S. & Chaolu, T. Fractal Solitons, Arbitrary Function Solutions, Exact Periodic Wave and Breathers for a Nonlinear Partial Differential Equation by Using Bilinear Neural Network Method. J Syst Sci Complex 34, 122–139 (2021). https://doi.org/10.1007/s11424-020-9392-5

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11424-020-9392-5

Keywords

Navigation