Skip to main content
Log in

Manifestation of Magnetic Characteristics of Zinc Ferrite Nanoparticles Using the Langevin Function

  • Original Paper
  • Published:
Journal of Superconductivity and Novel Magnetism Aims and scope Submit manuscript

Abstract

Zinc ferrite (ZnFe2O4) nanoparticles were prepared by chemical co-precipitation method. Structural characterization was performed using X-ray diffraction (XRD) and transmission electron microscopy (TEM). Formation of spinel phase was confirmed from XRD studies. Crystallite size and lattice constant of the prepared sample were calculated. TEM images reveal spherical-shaped particles with nanosized distribution. Room temperature magnetic hysteresis loop was recorded using vibrating sample magnetometer (VSM). The magnetization loops exhibit a very narrow loop and behave like superparamagnetic nature. Using the Langevin function, the magnetic behaviour of the prepared nanoparticles was investigated. From the curve fitting, saturation magnetization and reduced magnetization were determined. As-prepared sample was further annealed at three different temperatures namely 800 °C, 1000 °C, and 1200 °C for 2-h duration. The effects of annealing on the structural and magnetic properties were further investigated using XRD and VSM. The observed results on the magnetic characteristics of ZnFe2O4 and applicability of the Langevin function are being discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Goldman, A.: Modern Ferrite Technology. Springer, USA (2006)

    Google Scholar 

  2. Kefeni, K.K., Mamba, B.B., Msagati, T.A.M.: Application of Spinel Ferrite Nanoparticles in Water and Wastewater Treatment: a Review, vol. 188, p. 399 (2017)

    Google Scholar 

  3. Harres, A., Mikhov, M., Skumryev, V., De Andrade, A.M.H., Schmidt, J.E., Geshev, J.: Criteria for saturated magnetization loop. J. Magn. Magn. Mater. 402, 76 (2016). https://doi.org/10.1016/j.jmmm.2015.11.046

    Article  ADS  Google Scholar 

  4. Cullity, B.D., Graham, C.D.: Introduction to Magnetic Materials (Google eBook). John Wiley & Sons, Hoboken, New Jersey (2011)

    Google Scholar 

  5. Akulov, N.S.: Über den Verlauf der Magnetisierungskurve in starken Feldern. Zeitschrift für Phys. 69, 822–831 (1931)

    Article  ADS  Google Scholar 

  6. Brown, W.F.: Theory of the approach to magnetic saturation. Phys. Rev. 58, 736–743 (1940). https://doi.org/10.1103/PhysRev.58.736

    Article  MATH  ADS  Google Scholar 

  7. Devi, E.C., Soibam, I.: Magnetic properties and law of approach to saturation in Mn-Ni mixed nanoferrites. J. Alloys Compd. 772, 920–924 (2019). https://doi.org/10.1016/j.jallcom.2018.09.160

    Article  Google Scholar 

  8. Devi, E.C., Soibam, I.: Law of approach to saturation in Mn–Zn ferrite nanoparticles. J. Supercond. Nov. Magn. 32, 1293–1298 (2019). https://doi.org/10.1007/s10948-018-4823-4

    Article  Google Scholar 

  9. Devi, E.C., Soibam, I.: Journal of Magnetism and Magnetic Materials Tuning the magnetic properties of a ferrimagnet. J. Magn. Magn. Mater. 469, 587–592 (2019). https://doi.org/10.1016/j.jmmm.2018.09.034

    Article  ADS  Google Scholar 

  10. Komogortsev, S.V., Iskhakov, R.S.: Law of approach to magnetic saturation in nanocrystalline and amorphous ferromagnets with improved transition behavior between power-law regimes. J. Magn. Magn. Mater. 440, 213–216 (2017). https://doi.org/10.1016/j.jmmm.2016.12.145

    Article  ADS  Google Scholar 

  11. McCallum, R.W.: Determination of the saturation magnetization, anisotropy field, mean field interaction, and switching field distribution for nanocrystalline hard magnets. J. Magn. Magn. Mater. 292, 135–142 (2005). https://doi.org/10.1016/j.jmmm.2004.10.105

    Article  ADS  Google Scholar 

  12. Smit, J., Wijn, H.P.: Ferrites. Cleaver-Hume Press Ltd., London (1959)

    Google Scholar 

  13. Devi, E.C., Soibam, I.: Effect of Zn doping on the structural, electrical and magnetic properties of MnFe2O4 nanoparticles. Indian J. Phys. 91, 861–867 (2017). https://doi.org/10.1007/s12648-017-0981-7

    Article  ADS  Google Scholar 

  14. Devi, E.C., Soibam, I.: An investigation on the optical band gap and Ac conductivity of Mn-Zn nanoferrites. J. Supercond. Nov. Magn. 31, 1183 (2017). https://doi.org/10.1007/s10948-017-4294-z

    Article  Google Scholar 

  15. Chinnasamy, C.N., Narayanasamy, A., Ponpandian, N., Chattopadhyay, K., Shinoda, K., Jeyadevan, B., Tohji, K., Nakatsuka, K., Furubayashi, T., Nakatani, I.: Mixed spinel structure in nanocrystalline NiFe2O4. Phys. Rev. B - Condens. Matter Mater. Phys. 63, 2–7 (2001). https://doi.org/10.1103/PhysRevB.63.184108

    Article  Google Scholar 

  16. Hu, P., Yang, H., Pan, D., Wang, H., Tian, J., Zhang, S., Wang, X., Volinsky, A.A.: Heat treatment effects on microstructure and magnetic properties of Mn–Zn ferrite powders. J. Magn. Magn. Mater. 322, 173–177 (2010). https://doi.org/10.1016/j.jmmm.2009.09.002

    Article  ADS  Google Scholar 

  17. Ranjith Kumar, E., Arunkumar, T., Prakash, T.: Heat treatment effects on structural and dielectric properties of Mn substituted CuFe2O4 and ZnFe2O4 nanoparticles. Superlattice. Microst. 85, 530 (2015). https://doi.org/10.1016/j.spmi.2015.06.016

    Article  ADS  Google Scholar 

  18. Devi, E.C., Soibam, I.: A correlated structural and electrical study of manganese ferrite nanoparticles with variation in sintering temperature. Mod. Phys. Lett. B. 31, 1750236 (2017). https://doi.org/10.1142/S0217984917502360

    Article  ADS  Google Scholar 

  19. Hu, P., Yang, H.-b., Pan, D.-a., Wang, H., Tian, J.-j., Zhang, S.-g., Wang, X.-f., Volinsky, A.A.: Heat treatment effects on microstructure and magnetic properties of Mn-Zn ferrite powders. J. Magn. Magn. Mater. 322, 173 (2010). https://doi.org/10.1016/j.jmmm.2009.09.002

    Article  ADS  Google Scholar 

  20. Choi, E.J., Ahn, Y., Hahn, E.J.: Size dependence of the magnetic properties in superparamagnetic zinc-ferrite nanoparticles. J. Korean Phys. Soc. 53, 2090–2094 (2008). https://doi.org/10.3938/jkps.53.2090

    Article  ADS  Google Scholar 

  21. Egerton, R.F.: Physical Principles of Electron Microscopy. (2005)

    Book  Google Scholar 

  22. Lal, G., Punia, K., Dolia, S.N., Alvi, P.A., Dalela, S., Kumar, S.: Rietveld refinement, Raman, optical, dielectric, Mössbauer and magnetic characterization of superparamagnetic fcc-CaFe2O4 nanoparticles. Ceram. Int. 45, 5837–5847 (2019). https://doi.org/10.1016/j.ceramint.2018.12.050

    Article  Google Scholar 

  23. Manohar, A., Krishnamoorthi, C.: Low curie-transition temperature and superparamagnetic nature of Fe3O4 nanoparticles prepared by colloidal nanocrystal synthesis. Mater. Chem. Phys. 192, 235–243 (2017). https://doi.org/10.1016/j.matchemphys.2017.01.039

    Article  Google Scholar 

  24. Tiwari, S.D., Rajeev, K.P.: Effect of distributed particle magnetic moments on the magnetization of NiO nanoparticles. Solid State Commun. 152, 1080–1083 (2012). https://doi.org/10.1016/j.ssc.2012.03.003

    Article  ADS  Google Scholar 

  25. Abdul Khadar, M., Biju, V., Inoue, A.: Effect of finite size on the magnetization behavior of nanostructured nickel oxide. Mater. Res. Bull. 38, 1341–1349 (2003). https://doi.org/10.1016/S0025-5408(03)00139-9

    Article  Google Scholar 

  26. Dhanalakshmi, B., Vivekananda, K.V., Rao, B.P., Rao, P.S.V.S.: Superparamagnetism in Bi0.95Mn0.05FeO3 – Ni0.5Zn0.5Fe2O4 multiferroic nanocomposites. Phys. B Condens. Matter. 571, 5–9 (2019). https://doi.org/10.1016/j.physb.2019.06.058

    Article  ADS  Google Scholar 

  27. Singh, R., Jaromir, Y., Ivo, H., Kozakova, Z., Palou, M., Barton, E.: Magnetic Properties of ZnFe 2 O 4 Nanoparticles Synthesized by Starch-Assisted Sol – Gel Auto-combustion Method. 28, 1417 (2014). https://doi.org/10.1007/s10948-014-2870-z

  28. Kavas, H., Baykal, A., Toprak, M.S., Köseoǧlu, Y., Sertkol, M., Aktaş, B.: Cation distribution and magnetic properties of Zn doped NiFe2O4 nanoparticles synthesized by PEG-assisted hydrothermal route. J. Alloys Compd. 479, 49–55 (2009). https://doi.org/10.1016/j.jallcom.2009.01.014

    Article  Google Scholar 

  29. Keshri, S., Biswas, S., Wis̈niewski, P.: Studies on characteristic properties of superparamagnetic La0.67Sr0.33-xKxMnO3 nanoparticles. J. Alloys Compd. 656, 245–252 (2016). https://doi.org/10.1016/j.jallcom.2015.09.176

  30. Aguiló-Aguayo, N., Inestrosa-lzurieta, M.J., García-Céspedes, J., Bertran, E.: Morphological and magnetic properties of superparamagnetic carbon-coated Fe nanoparticles produced by arc discharge. J. Nanosci. Nanotechnol. 10, 2646–2649 (2010). https://doi.org/10.1166/jnn.2010.1420

    Article  Google Scholar 

  31. Lal, G., Punia, K., Dolia, S.N., Alvi, P.A., Choudhary, B.L., Kumar, S.: Structural, cation distribution, optical and magnetic properties of quaternary Co0.4+xZn0.6-xFe2O4 (x = 0.0, 0.1 and 0.2) and Li doped quinary Co0.4+xZn0.5-xLi0.1Fe2O4 (x = 0.0, 0.05 and 0.1) nanoferrites. J. Alloys Compd. 828, (2020). https://doi.org/10.1016/j.jallcom.2020.154388

  32. Mallesh, S., Srinivas, V., Vasundhara, M., Kim, K.H.: Low-temperature magnetization behaviors of superparamagnetic MnZn ferrites nanoparticles. Phys. B Condens. Matter. 582, 411963 (2019). https://doi.org/10.1016/j.physb.2019.411963

    Article  Google Scholar 

Download references

Acknowledgements

Elangbam Chitra Devi is thankful to the University Grants Commission, New Delhi, India, for the award of Dr. D.S. Kothari Post-Doctoral Fellowship (Award No. F. 4-2/2006(BSR)/PH/18-19/0090). Authors are grateful to CIF, IIT Guwahati for VSM measurements and SAIF, NEHU for TEM measurements.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elangbam Chitra Devi.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Devi, E.C., Singh, S.D. Manifestation of Magnetic Characteristics of Zinc Ferrite Nanoparticles Using the Langevin Function. J Supercond Nov Magn 34, 617–622 (2021). https://doi.org/10.1007/s10948-020-05732-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10948-020-05732-7

Keywords

Navigation