Skip to main content
Log in

Novel Fe2O3-CuO-MoO3 Magnetic Nanocomposite for Photocatalysis of Methylene Blue

  • Original Paper
  • Published:
Journal of Superconductivity and Novel Magnetism Aims and scope Submit manuscript

Abstract

Novel approach for the synthesis of Fe2O3-CuO-MoO3 nanocomposite was established using sol-gel and ultra-sonication setup. The conformation of the synthesized nanocomposite was done using Fourier transform-infrared spectroscopy (FTIR), X-ray diffraction (XRD), and scanning electron microscopy-energy dispersive X-ray (SEM-EDX) techniques. The chemistry of product thermal stability and decomposition was studied using thermo gravimetric analysis-differential scanning calorimetery (TGA-DSC) with respect to increase in temperature. The optical properties were studied using UV-visible spectroscopy via Wood and Tauc relation. XRD data indicates the presence of orthorhombic crystal system with crystallite size of 4.45 and 38.71 nm using Scherrer equation and Williamson-Hall equations, respectively. The particle size was calculated using transmission electron microscopy (TEM) and found to be 12.67 nm. The catalytic ability of synthesized nanocomposite was studied against methylene blue, and the decrease in percentage degradation from 5 to 30% was observed in nanocomposite prepared from sol-gel to ultra-sonication method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Irfan, S., et al.: Effect of graphene oxide nano-sheets on structural, morphological and photocatalytic activity of BiFeO3-based nanostructures. Nanomaterials. 9(9), 1337 (2019)

    Article  Google Scholar 

  2. Dhanavel, S., et al.: Visible light induced photocatalytic degradation of methylene blue using polyaniline modified molybdenum trioxide. Mech. Mater. Sci. Eng. 9, (2017). https://doi.org/10.2412/mmse.63.64.916

  3. Anjaneyulu, R.B., et al.: Visible light enhanced photocatalytic degradation of methylene blue by ternary nanocomposite, MoO3/Fe2O3/rGO. J. Asian Ceramic Soc. 6(3), 183–195 (2018)

    Article  Google Scholar 

  4. Tran, et al.: Copper oxide nanomaterials prepared by solution methods, some properties, and potential applications: a brief review International scholarly research notices, 2014 (2014)

  5. Amin, N.H., et al.: Effect of Fe2O3 precursors on physicochemical and catalytic properties of CuO/Fe2O3 system. Arab. J. Chem. 9(S1), S678–S684 (2016)

    Article  Google Scholar 

  6. Avgouropoulos, G., et al.: A comparative study of Pt/γ-Al2O3, au/α-Fe2O3 and CuO–CeO2 catalysts for the selective oxidation of carbon monoxide in excess hydrogen. Catal. Today. 75(1–4), 157–167 (2002)

    Article  Google Scholar 

  7. Younes, H., et al.: Effects of alignment, p H, surfactant, and solvent on heat transfer nanofluids containing Fe2O3 and CuO nanoparticles. J. Appl. Phys. 111(6), 064308 (2012)

    Article  ADS  Google Scholar 

  8. Carraro, G., et al.: Fe2O3-CuO nanocomposites prepared by a two-step vapor phase strategy and analyzed by XPS. Surf. Sci. Spectra. 21(1), 1–9 (2014)

    Article  ADS  Google Scholar 

  9. Meshkani, F., Rezaei, M., Jafarbegloo, M.: Preparation of nanocrystalline Fe2O3–Cr2O3–CuO powder by a modified urea hydrolysis method: a highly active and stable catalyst for high temperature water gas shift reaction. Mater. Res. Bull. 64, 418–424 (2015)

    Article  Google Scholar 

  10. Nations, S., et al.: Acute effects of Fe2O3, TiO2, ZnO and CuO nanomaterials on Xenopus laevis. Chemosphere. 83(8), 1053–1061 (2011)

    Article  ADS  Google Scholar 

  11. García-Tamayo, E., et al.: Nanostructured Fe2O3 and CuO composite electrodes for Li ion batteries synthesized and deposited in one step. J. Power Sources. 196(15), 6425–6432 (2011)

    Article  ADS  Google Scholar 

  12. Karunakaran, C., Jayabharathi, J., Jayamoorthy, K.: Photoinduced electron transfer from benzimidazole to nano WO3, CuO and Fe2O3. A new approach on LUMO–CB energy-binding efficiency relationship. Sensors Actuators B Chem. 182, 514–520 (2013)

    Article  Google Scholar 

  13. Melero, J.A., et al.: Nanocomposite of crystalline Fe2O3 and CuO particles and mesostructured SBA-15 silica as an active catalyst for wet peroxide oxidation processes. Catal. Commun. 7(7), 478–483 (2006)

    Article  Google Scholar 

  14. ElHarby, N., Badawy, A., Ibrahim, S.: Improvement of Nanosized CuO-Fe2O3/cordierite system by Li2O-treatment for wastewater treatment. J. Ultrafin grain nanostruct Mater. 52(2), 175–187 (2019)

  15. Sirichaiprasert, K., Pongstabodee, S., Luengnaruemitchai, A.: Single-and double-stage catalytic preferential CO oxidation in H2-rich stream over an α-Fe2O3-promoted CuO–CeO2 catalyst. J. Chin. Inst. Chem. Eng. 39(6), 597–607 (2008)

    Article  Google Scholar 

  16. Heating, D.: Metal oxide nanofluids (CuO and Fe2O3) for solar heating, Desalination and azeotropic separation (2018)

  17. Younis, S.M.Z., Iqbal, J.: Estimation of soil moisture using multispectral and FTIR techniques. Egypt. J. Remote Sens. Space Sci. 18(2), 151–161 (2015)

    Google Scholar 

  18. Apte, S.K., et al.: Synthesis of nanosize-necked structure α- and γ-Fe2O3 and its photocatalytic activity. J. Am. Ceram. Soc. 90(2), 412–414 (2007)

    Article  Google Scholar 

  19. Nishtar Nishad Fathima, A.R., Sreedhar, B., Mandal, A.B.: The formation of copper oxide nanorods in the presence of various surfactant micelles. Indian J. Sci. Technol. 1(7), (2008)

  20. Sundeep, D., et al.: Spectral characterization of mechanically synthesized MoO3-CuO nanocomposite. Int. Nano Lett. 6(2), 119–128 (2016)

    Article  Google Scholar 

  21. Hough, R.M., Noble, R.R.P., Reich, M.: Natural gold nanoparticles. Ore Geol. Rev. 42(1), 55–61 (2011)

    Article  Google Scholar 

  22. Kumar, G.N., Reddy, Y.V.M., Reddy, K.H.: Synthesis and characterization of iron oxide nanoparticles reinforced polyester/nanocomposites. Int. J. Sci. Res. Publ. 5(8), (2015)

  23. Brookes, C., et al.: Molybdenum oxide on Fe2O3 core–shell catalysts: probing the nature of the structural motifs responsible for methanol oxidation catalysis. ACS Catal. 4(1), 243–250 (2014)

    Article  Google Scholar 

  24. Belkhedkar, M.R., Ubale, A.U.: Preparation and characterization of nanocrystallineα-Fe2O3 thin films grown by successive ionic layeradsorption and reaction method. Int. J. Mater. Chem. 5(4), 109–116 (2014)

    Google Scholar 

  25. Seguin, L., et al.: Infrared and Raman spectra of MoO3 molybdenum trioxides and MoO3.xH2O molybdenum trioxide hydrates. Spectrochim. Acta A Mol. Biomol. Spectrosc. 51(8), 1323–1344 (1995)

    Article  ADS  Google Scholar 

  26. Ethiraj, A.S., Kang, D.J.: Synthesis and characterization of CuO nanowires by a simple wet chemical method. Nanoscale Res. Lett. 7(1), 70 (2012)

    Article  ADS  Google Scholar 

  27. Parra, M.R., Haque, F.Z.: Aqueous chemical route synthesis and the effect of calcination temperature on the structural and optical properties of ZnO nanoparticles. J. Mater. Res. Technol. 3(4), 363–369 (2014)

    Article  Google Scholar 

  28. Venkateswarlu, K., et al.: Estimation of crystallite size, lattice strain and dislocation density of nanocrystalline carbonate substituted hydroxyapatite by X-ray peak variance analysis. Procedia Mater. Sci. 5, 212–221 (2014)

    Article  Google Scholar 

  29. Ali, S., Farrukh, M.A.: Effect of calcination temperature on the structural, thermodynamic, and optical properties of MoO3 nanoparticles. J. Chin. Chem. Soc. 65(2), 276–288 (2018)

    Article  Google Scholar 

  30. Farrukh, M.A., et al.: Photoluminescence emission behavior on the reduced band gap of Fe doping in CeO2-SiO2 nanocomposite and photophysical properties. J. Saudi Chem. Soc. 23(5), 561–575 (2019)

    Article  Google Scholar 

  31. Kovács, T.N., et al.: Thermal decomposition of ammonium molybdates. J. Therm. Anal. Calorim. 124(2), 1013–1021 (2016)

    Article  Google Scholar 

  32. Aliahmad, M., Nasiri Moghaddam, N.: Synthesis of maghemite (γ-Fe2O3) nanoparticles by thermal-decomposition of magnetite (Fe3O4) nanoparticles. Mater. Sci.-Pol. 31(2), 264–268 (2013)

    Article  ADS  Google Scholar 

  33. Javaid, S., et al.: Influence of optical band gap and particle size on the catalytic properties of Sm/SnO2–TiO2 nanoparticles. Superlattice. Microst. 82, 234–247 (2015)

    Article  ADS  Google Scholar 

  34. Thakur, S., et al.: Optical properties and morphological changes in gadolinia films deposited under ambient substrate temperature conditions. Opt. Mater. 27(8), 1402–1409 (2005)

    Article  ADS  Google Scholar 

  35. Kushwaha, A.K., Gupta, N., Chattopadhyaya, M.C.: Removal of cationic methylene blue and malachite green dyes from aqueous solution by waste materials of Daucus carota. J. Saudi Chem. Soc. 18(3), 200–207 (2014)

    Article  Google Scholar 

  36. Farrukh, M.A., et al.: Effect of dielectric constant of solvents on the particle size and bandgap of La/SnO2-TiO2 nanoparticles and their catalytic properties. J. Chin. Chem. Soc. 63(12), 952–959 (2016)

    Article  Google Scholar 

  37. Butt, K.M., Farrukh, M.A., Muneer, I.: Influence of lanthanum doping via hydrothermal and reflux methods on the SnO2–TiO2 nanoparticles prepared by sol–gel method and their catalytic properties. J. Mater. Sci. Mater. Electron. 1–6 (2016)

  38. Imtiaz, A., Farrukh, M.A.: Influence of CdS dopant on oxygen vacancies and Ce3+ formation in CeO2–ZnO nanocomposites: structural, optical and catalytic properties. J. Mater. Sci. Mater. Electron. 28(3), 2788–2794 (2017)

    Article  Google Scholar 

  39. Ali, S., Farrukkh, M.A., Khaleeq-ur-Rahman, M.: Photodegradation of 2,4,6-trinitrophenol catalyzed by Zn/MgO nanoparticles prepared in aqueous-organic medium. Korean J. Chem. Eng. 30(11), 2100–2107 (2013)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shaista Ali.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mahmood, A., Zulfiqar, S., Ali, S. et al. Novel Fe2O3-CuO-MoO3 Magnetic Nanocomposite for Photocatalysis of Methylene Blue. J Supercond Nov Magn 34, 1791–1799 (2021). https://doi.org/10.1007/s10948-020-05725-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10948-020-05725-6

Keywords

Navigation