Skip to main content
Log in

A Multilayer Shallow Water Approach for Polydisperse Sedimentation with Sediment Compressibility and Mixture Viscosity

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

A three-dimensional multilayer shallow water approach to study polydisperse sedimentation and sediment transport in a viscous fluid is presented. The fluid is assumed be loaded with finely dispersed solid particles that belong to a finite number of species that differ in density and size. The model formulation allows one to recover the global mass and linear momentum balance laws of the mixture. The model incorporates compressibility of the sediment and viscosity of the mixture through a viscous stress tensor. As a consequence of a dimensional analysis applied to the global mass conservation and linear momentum balance equations, the horizontal components of the compression term and the horizontal terms of the viscous stress tensor may be neglected. This results in a final model that is vertically consistent with the classical one-dimensional vertical model. Numerical simulations illustrate the coupled solids volume fraction and flow fields in various scenarios and the effect of the compressibility and viscosity terms. Various bottom topographies give rise to recirculation of the fluid and high solids volume fractions on the bottom.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Audusse, E., Bristeau, M., Perthame, B., Sainte-Marie, J.: A multilayer Saint-Venant system with mass exchanges for shallow water flows: Derivation and numerical validation. ESAIM: Math. Model. Numer. Anal. 45(1), 169–200 (2011). https://doi.org/10.1051/m2an/2010036

  2. Audusse, E.: A multilayer Saint-Venant model: derivation and numerical validation. Discrete Contin. Dyn. Syst. Ser. B 5(2), 189–214 (2005). https://doi.org/10.3934/dcdsb.2005.5.189

    Article  MathSciNet  MATH  Google Scholar 

  3. Austin, L.G., Lee, C.H., Concha, F.: Hindered settling and classification partition curves. Miner. Metall. Process. 9(4), 161–168 (1992)

    Google Scholar 

  4. Berres, S., Bürger, R., Karlsen, K.H., Tory, E.M.: Strongly degenerate parabolic–hyperbolic systems modeling polydisperse sedimentation with compression. SIAM J. Appl. Math. 64(1), 41–80 (2003). https://doi.org/10.1137/S0036139902408163

    Article  MathSciNet  MATH  Google Scholar 

  5. Bonnecaze, R.T., Huppert, H.E., Lister, J.R.: Patterns of sedimentation from polydispersed turbidity currents. Proc. R. Soc. Lond. A 452, 2247–2261 (1996)

    Article  Google Scholar 

  6. Boscarino, S., Bürger, R., Mulet, P., Russo, G., Villada, L.M.: On linearly implicit IMEX Runge-Kutta methods for degenerate convection–diffusion problems modeling polydisperse sedimentation. Bull. Braz. Math. Soc. (N. S.) 47(1), 171–185 (2016). https://doi.org/10.1007/s00574-016-0130-5

  7. Boscarino, S., Bürger, R., Mulet, P., Russo, G., Villada, L.M.: Linearly implicit IMEX Runge–Kutta methods for a class of degenerate convection–diffusion problems. SIAM J. Sci. Comput. 37(2), B305–B331 (2015). https://doi.org/10.1137/140967544

    Article  MathSciNet  MATH  Google Scholar 

  8. Bouchut, F., Fernández-Nieto, E., Mangeney, A., Narbona-Reina, G.: A two-phase shallow debris flow model with energy balance. ESAIM: Math. Model. Numer. Anal. 49(1), 101–140 (2015)

  9. Bürger, R., Evje, S., Karlsen, K.H., Lie, K.A.: Numerical methods for the simulation of the settling of flocculated suspensions. Chem. Eng. J. 80(1), 91–104 (2000). https://doi.org/10.1016/S1383-5866(00)00080-0

  10. Bürger, R., Fernández-Nieto, E.D., Osores, V.: A dynamic multilayer shallow water model for polydisperse sedimentation. ESAIM: Math. Model. Numer. Anal. 53(5), 1391–1432 (2019). https://doi.org/10.1051/m2an/2019032

  11. Bürger, R., Wendland, W.L., Concha, F.: Model equations for gravitational sedimentation–consolidation processes. ZAMM Z. Angew. Math. Mech. 80, 79–92 (2000)

    Article  MathSciNet  Google Scholar 

  12. Bürger, R., Mulet, P., Villada, L.M.: Regularized nonlinear solvers for IMEX methods applied to diffusively corrected multispecies kinematic flow models. SIAM J. Sci. Comput. 35(3), B751–B777 (2013). https://doi.org/10.1137/120888533

    Article  MathSciNet  MATH  Google Scholar 

  13. Bürger, R., Diehl, S., Farås, S., Nopens, I., Torfs, E.: A consistent modelling methodology for secondary settling tanks: a reliable numerical method. Water Sci. Technol. 68, 192–208 (2013). https://doi.org/10.2166/wst.2013.239

    Article  Google Scholar 

  14. Bürger, R., Diehl, S., Martí, M.C., Mulet, P., Nopens, I., Torfs, E., Vanrolleghem, P.A.: Numerical solution of a multi-class model for batch settling in water resource recovery facilities. Appl. Math. Model. 49, 415–436 (2017). https://doi.org/10.1016/j.apm.2017.05.014

    Article  MathSciNet  MATH  Google Scholar 

  15. Castro Díaz, M.J., Fernández-Nieto, E.: A class of computationally fast first order finite volume solvers: PVM methods. SIAM J. Sci. Comput. 34(4), A2173–A2196 (2012). https://doi.org/10.1137/100795280

    Article  MathSciNet  MATH  Google Scholar 

  16. Diehl, S.: Shock-wave behaviour of sedimentation in wastewater treatment: a rich problem. In: Åström, K., Persson, L.E., Silvestrov, S.D. (eds.) Analysis for Science, Engineering and Beyond, pp. 175–214. Springer, Berlin (2012)

    Chapter  Google Scholar 

  17. Fernández-Nieto, E.D., Koné, E.H., Morales de Luna, T., Bürger, R.: A multilayer shallow water system for polydisperse sedimentation. J. Comput. Phys. 238, 281–314 (2013). https://doi.org/10.1016/j.jcp.2012.12.008

  18. Fernández-Nieto, E.D., Koné, E.H., Chacón Rebollo, T.: A multilayer method for the hydrostatic Navier–Stokes equations: a particular weak solution. J. Sci. Comput. 60(2), 408–437 (2014). https://doi.org/10.1007/s10915-013-9802-0

    Article  MathSciNet  MATH  Google Scholar 

  19. Gladstone, C., Philips, J., Sparks, R.: Experiments on bidisperse, constant–volume gravity currents: propagation and sediment deposition. Sedimentology 45, 833–843 (1998)

    Article  Google Scholar 

  20. Harris, T.C., Hogg, A.J., Huppert, H.E.: Polydisperse particle-driven gravity currents. J. Fluid Mech. 472, 333–371 (2002)

    Article  Google Scholar 

  21. Lockett, M.J., Bassoon, K.S.: Sedimentation of binary particle mixtures. Powder Technol. 24, 1–7 (1979)

    Article  Google Scholar 

  22. Masliyah, J.H.: Hindered settling in a multiple-species particle system. Chem. Eng. Sci. 34, 1166–1168 (1979)

    Article  Google Scholar 

  23. Meiburg, E., Kneller, B.: Turbidity currents and their deposits. Annu. Rev. Fluid Mech. 42(1), 135–156 (2010). https://doi.org/10.1146/annurev-fluid-121108-145618

    Article  MATH  Google Scholar 

  24. Pérez, M., Font, R., Pastor, C.: A mathematical model to simulate batch sedimentation with compression behavior. Comput. Chem. Eng. 22(11), 1531–1541 (1998).https://doi.org/10.1016/S0098-1354(98)00246-4

  25. Richardson, J.F., Zaki, W.N.: Sedimentation and fluidisation: Part I. Trans. Inst. Chem. Eng. (Lond.) 32, 34–53 (1954)

    Google Scholar 

  26. Rushton, A., Ward, A.S., Holdich, R.G.: Solid–Liquid Filtration and Sedimentation Technology, 2nd edn. Wiley-VCH, Weinheim (2000)

    Google Scholar 

  27. Sainte-Marie, J.: Vertically averaged models for the free surface non-hydrostatic Euler system: derivation and kinetic interpretation. Math. Models Methods Appl. Sci. 21(3), 459–490 (2011). https://doi.org/10.1142/S0218202511005118

Download references

Acknowledgements

RB is supported by Fondecyt Project 1170473; CRHIAM, Project ANID/FONDAP/15130015; and CONICYT/PIA/Concurso Apoyo a Centros Científicos y Tecnológicos de Excelencia con Financiamiento Basal AFB170001. EDFN is supported by the Spanish Government and FEDER through the Research project MTM 2015-70490-C2-2-R. VO is supported by CONICYT scholarship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Víctor Osores.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bürger, R., Fernández-Nieto, E.D. & Osores, V. A Multilayer Shallow Water Approach for Polydisperse Sedimentation with Sediment Compressibility and Mixture Viscosity. J Sci Comput 85, 49 (2020). https://doi.org/10.1007/s10915-020-01334-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10915-020-01334-6

Keywords

Mathematics Subject Classification

Navigation