Skip to main content
Log in

Engineering Lipase Enzyme Nano-powder Using Nano Spray Dryer BÜCHI B-90: Experimental and Factorial Design Approach for a Stable Biocatalyst Production

  • Original Article
  • Published:
Journal of Pharmaceutical Innovation Aims and scope Submit manuscript

Abstract

Purpose

The industrial applications of lipases are hampered by their sensitive nature to processing and storage conditions. In this context, this study presents a simple statistical modeling approach using Nano Spray Dryer BÜCHI B-90 as an ideal technique for the production of stable lipase nano-powder (LNP).

Methods

In this study, factorial design is employed to optimize the spray drying process for Mucor racemosus lipase enzyme. Different variables were investigated such as adjuvant type (dextrin, mannitol, and lactose), concentration (2%, 4%, 8%), nozzle diameter, and inlet temperature (80 °C, 100 °C, 120 °C). Additionally, the physicochemical properties of LNP including particle size, residual enzyme activity, powder yield, morphology, and moisture content are investigated.

Results

Results indicate a significant effect of additive type on product yield value and particle size. LNP exhibited a broad range of physical characteristics (enzyme residual activity 80.5–100%, particle size 210–1313 nm, and yield value 24–99%) and 98.4% residual activity after storage for 2 months at 5 °C. Scanning electron microscopy (SEM) images have shown a variation in the morphology of LNP with a remarkable flower-like structure in presence of lactose. The measured pronounced lipase stability is accredited to high local lipase concentration, adjuvant stabilizing effect, and favorable lipase conformation at the nano-scale-solid state.

Conclusion

Based on the results presented, a robust approach for the production of a maximally viable spray-dried LNP in solid form can be employed for extended biotherapeutic and biotechnological applications of lipase.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Loli H, Narwal SK, Saun NK, Gupta R. Lipases in medicine: an overview. Mini-Rev Med Chem. 2015;15(14):1209–16.

    Article  CAS  Google Scholar 

  2. Mehta A, Bodh U, Gupta R. Fungal lipases: a review. J Biotech Res. 2017;8:58–77.

    CAS  Google Scholar 

  3. Choi J-M, Han S-S, Kim H-S. Industrial applications of enzyme biocatalysis: current status and future aspects. Biotechnol Adv. 2015;33:1443–54.

    Article  CAS  Google Scholar 

  4. Mohamed SA, Abdel-Mageed HM, Tayel SA. Characterization of Mucor racemosus lipase with potential application for the treatment of cellulite. Process Biochem. 2011;46:642–8.

    Article  CAS  Google Scholar 

  5. Pulat M, Akalin G. Preparation and characterization of gelatin hydrogel support for immobilization of Candida Rugosa lipase. Artif Cells Nanomed Biotechnol. 2013;41:145–51. https://doi.org/10.3109/10731199.2012.696070.

    Article  CAS  PubMed  Google Scholar 

  6. Anobom C, Pinheiro A, De-Andrade R, et al. From structure to catalysis: recent developments in the biotechnological applications of lipases. Biomed Res Int. 2014;684506:1–11. https://doi.org/10.1155/2014/684506.

    Article  Google Scholar 

  7. Abdel-Mageed HM, El-Laithy H, Mahran L, Mohamed SA, Fahmy A, Mäder K. Development of novel flexible sugar ester vesicles as carrier systems for antioxidant catalase enzyme for wound healing application. Process Biochem. 2012;47:1155–62.

    Article  CAS  Google Scholar 

  8. Abdel-Mageed HM, Radwan R, AbuelEzz N, Nasser H, El Shamy A, Abdelnaby R, et al. Bioconjugation as a smart immobilization approach for α- amylase enzyme using stimuli responsive Eudragit-L100 polymer: a robust biocatalyst for applications in pharmaceutical industry. Artif Cells Nanomed Biotechnol. 2019a;47(1):2361–8.

    Article  CAS  Google Scholar 

  9. Abdel-Mageed HM, Abuel ezz, N., Radwan, R. Bio-inspired trypsin-chitosan cross-linked enzyme aggregates: a versatile approach for stabilization through carrier-free immobilization. Biotechnologia. 2019b;100:301–9.

    Article  Google Scholar 

  10. Langford A, Bhatnagar B, Walters R, Tchessalov S, Ohtake S. Drying technologies for biopharmaceutical applications: recent developments and future direction. Dry Technol. 2018;36:677–84. https://doi.org/10.1080/07373937.2017.1355318.

    Article  CAS  Google Scholar 

  11. Emami F, Vatanara A, Ji Park E, et al. Drying technologies for the stability and bioavailability of biopharmceuticals. Pharmaceutics. 2018;10:131–52. https://doi.org/10.3390/pharmaceutics10030131.

    Article  CAS  PubMed Central  Google Scholar 

  12. Ziaee A, Albadarin A, Padrela L, et al. Spray drying of pharmaceuticals and biopharmaceuticals: critical parameters and experimental process optimization approaches. Eur J Pharm Sci. 2019;127:300–18.

    Article  CAS  Google Scholar 

  13. Ameri M, Maa Y-F. Spray drying of biopharmaceuticals: stability and process considerations. Dry Technol. 2006;24:763–8. https://doi.org/10.1080/03602550600685275.

    Article  CAS  Google Scholar 

  14. Elversson J, Millqvist-Fureby A. Particle size and density in spray drying-effects of carbohydrate properties. J Pharm Sci. 2005;94:2049–60.

    Article  CAS  Google Scholar 

  15. Arpagaus C, Collenberg A, Rütti D, et al. Nano spray drying for encapsulation of pharmaceuticals. Int J Pharm. 2018;546:194–214. https://doi.org/10.1016/j.ijpharm.2018.05.037.

    Article  CAS  PubMed  Google Scholar 

  16. Costa-Silva A, Nogueira A, Cláudia R. Lipase production by endophytic fungus Cercospora kikuchii: stability of enzymatic activity after spray drying in the presence of carbohydrates. Dry Technol. 2011;29:1112–9. https://doi.org/10.1080/07373937.2011.573153.

    Article  CAS  Google Scholar 

  17. Cavalcanti RMF, Martinez MLL, Oliveira WP, Guimarães LHS. Stabilization and application of spray-dried tannase from Aspergillus fumigatus CAS21 in the presence of different carriers. 3 Biotech. 2020;10(4):177. https://doi.org/10.1007/s13205-020-2164-z.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Abdel-Mageed HM, Fouad SA, Teaima MH, et al. Optimization of nano spray drying parameters for production of α-amylase nanopowder for biotheraputic applications using factorial design. Dry Technol. 2019:2152–60. https://doi.org/10.1080/07373937.2019.1565576.

  19. Lipiäinen T, Räikkönen H, Kolu AM, Peltoniemi M, Juppo A. Comparison of melibiose and trehalose as stabilising excipients for spray-dried β-galactosidase formulations. Int J Pharm. 2018;543(1–2):21–8. https://doi.org/10.1016/j.ijpharm.2018.03.035.

    Article  CAS  PubMed  Google Scholar 

  20. Lee G. Rational design of stable protein formulations. In: Carpenter JF, Manning MC, editors. Pharmaceutical biotechnology. Boston: Springer; 2002.

    Google Scholar 

  21. Haggag YA, Faheem AM. Evaluation of nano spray drying as a method for drying and formulation of therapeutic peptides and proteins. Front Pharmacol. 2015;6:140.

    Article  Google Scholar 

  22. Tietz N, Fiereck E. A specific method for serum lipase determination. Clin Chem Acta. 1966;3:352.

    Article  Google Scholar 

  23. Prinn K, Costantino H, Tracy M. Statistical modeling of protein spray drying at the lab scale. AAPS Pharm Sci Tech. 2002;3:1–8.

    Article  Google Scholar 

  24. Arpagaus C. A novel laboratory-scale spray dryer to produce nanoparticles. Dry Technol. 2012;30:1113–21. https://doi.org/10.1080/07373937.2012.686949.

    Article  CAS  Google Scholar 

  25. Beck-Broichsitter M, Strehlow B, Kissel T. Direct fractionation of spray-dried polymeric microparticles by inertial impaction. Powder Technol. 2015;286:311–7. https://doi.org/10.1016/j.powtec.2015.08.033.

    Article  CAS  Google Scholar 

  26. Ståhl K, Claesson M, Lilliehorn P, Lindén H, Bäckström K. The effect of process variables on the degradation and physical properties of spray dried insulin intended for inhalation. Int J Pharm. 2002;233:227–37.

    Article  Google Scholar 

  27. Mensink MA, Frijlink HW, van der Voort Maarschalk K, Hinrichs WL. How sugars protect proteins in the solid state and during drying (review): mechanisms of stabilization in relation to stress conditions. Eur J Pharm Biopharm. 2017;114:288–95.

    Article  CAS  Google Scholar 

  28. Raman B, Sundari CS, Balasubramanian D. Amphiphilic properties of polysaccharides: dextrin chains as example. Indian J Biochem Biophys. 1992;29(2):143–7.

    CAS  PubMed  Google Scholar 

  29. Cabral TPF, Bellini NC, Assis KR, Teixeira CCC, Lanchote AD, Cabral H, et al. Microencapsulate Aspergillus niger peptidases from agroindustrial waste wheat bran: spray process evaluation and stability. J Microencapsul. 2017;34(6):560–70. https://doi.org/10.1080/02652048.2017.1367851.

    Article  CAS  PubMed  Google Scholar 

  30. Chan HK, Clark AR, Feeley JC, Kuo MC, Lehrman SR, Pikal-Cleland K, et al. Physical stability of salmon calcitonin spray-dried powders for inhalation. J Pharm Sci. 2004;93(3):792–804. https://doi.org/10.1002/jps.10594.

    Article  CAS  PubMed  Google Scholar 

  31. Grenha A, Seijo B, Remunán-López C. Microencapsulated chitosan nanoparticles for lung protein delivery. Eur J Pharm Sci. 2005;25:427–37. https://doi.org/10.1016/j.ejps.2005.04.009.

    Article  CAS  PubMed  Google Scholar 

  32. Sansone F, Esposito T, Mencherini T, Lauro MR, del Gaudio P, Picerno P, et al. Particle technology applied to a lactose/NaCMC blend: production and characterization of a novel and stable spray-dried ingredient. Powder Technol. 2018;329:304–12.

    Article  CAS  Google Scholar 

  33. Roos YR, Karel MA. Crystallization of amorphous lactose. J Food Sci. 1992;57:775–7. https://doi.org/10.1111/j.1365-2621.1992.tb08095.x.

    Article  CAS  Google Scholar 

  34. Tan S, Ebrahimi A, Liu X, Langrish T. Role of templating agents in the spray drying and postcrystallization of lactose for the production of highly porous powders. Dry Technol. 2018;36(15):1882–91. https://doi.org/10.1080/07373937.2018.1445096.

    Article  CAS  Google Scholar 

  35. Schmid K, Arpagaus C, Friess W. Evaluation of the Nano Spray Dryer B-90 for pharmaceutical applications. Pharm Dev Technol. 2010;16(4):287–94.

    Article  Google Scholar 

  36. Landström K, Alsins J, Bergenstahl B. Competitive protein adsorption between bovine serum albumin and b-lactoglobulin during spray-drying. Food Hydrocoll. 2000;14:75–82.

    Article  Google Scholar 

  37. Zhang S, Lei H, Gao X, Xiong X, Wu WD, Wu Z, et al. Fabrication of uniform enzyme-immobilized carbohydrate microparticles with high enzymatic activity and stability via spray drying and spray freeze drying. Powder Technol. 2018;30:40–9. https://doi.org/10.1016/j.powtec.2018.02.02.

    Article  Google Scholar 

  38. Niamnuy C, Poomkokrak L, Dittanet P, Devahastin S. Impacts of spray drying conditions on stability of isoflavones in microencapsulated soybean extract. Dry Technol. 2019;37:1844–62. https://doi.org/10.1080/07373937.2019.1596120.

    Article  CAS  Google Scholar 

  39. Jafari S, Masoudi S, Bahrami A. A Taguchi approach production of spray-dried whey powder enriched with nanoencapsulated vitamin D3. Dry Technol. 2019;37:2059–71. https://doi.org/10.1080/07373937.2018.1552598.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Heidi M. Abdel-Mageed.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abdel-Mageed, H.M., Fouad, S.A., Teaima, M.H. et al. Engineering Lipase Enzyme Nano-powder Using Nano Spray Dryer BÜCHI B-90: Experimental and Factorial Design Approach for a Stable Biocatalyst Production. J Pharm Innov 16, 759–771 (2021). https://doi.org/10.1007/s12247-020-09515-4

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12247-020-09515-4

Keywords

Navigation