Skip to main content
Log in

Impact of the PtO loading on mesoporous TiO2 nanoparticles for enhanced photodegradation of Imazapyr herbicide under simulated solar light

  • Research paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

The removal of the commonly used herbicides is essential for environmental remediation. In this study, mesoporous TiO2 photocatalysts modified with PtO were synthetized by the template-assisted scheme to develop highly effective materials for the elimination of Imazapyr herbicide under visible-light preservation. The effect of the PtO loading was investigated, and the xPtO-TiO2 materials were deeply considered by N2 physisorption, XRD, HRTEM, FTIR, DRS UV-Vis, Raman, XPS, PL and photocurrent measurements. Total Imazapyr photodegradation was archived on mesoporous TiO2 photocatalysts loaded with 0.6 and 0.8 wt% of PtO. The optimized xPtO-TiO2 photocatalyst degrades the Imazapyr under solar light more efficiently than the pure TiO2 and the commercial Degussa P25 (photoefficiency of 35%, 1%, and 0.5%, respectively). The improvement in the photoefficiency of the xPtO-TiO2 photocatalysts respect to the pure TiO2 was associated to the cooperative effect between PtO and TiO2 nanoparticles leading to a lessening in the energy gap and lower recombination of excited electron-hole pairs. The optimized 0.6PtO-TiO2 photocatalyst demonstrated to be stable and recyclable after up to five consecutive photocatalytic runs. Therefore, it can be a potential candidate for the significant mineralization of Imazapyr herbicide under solar light irradiation.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Aarthi T, Madras G (2007) Photocatalytic degradation of rhodamine dyes with nano-TiO2. Ind Eng Chem Res 46:7–14

    CAS  Google Scholar 

  • Acosta-Silva YJ, Nava R, Hernandez-Morales V, Macias-Sánchez SA, Pawelec B (2013) TiO2/DMS-1 disordered mesoporous system: structural vharacteristics and methylene blue photodegradation activity. Microporous Mesoporous Mater 170:181–188

    CAS  Google Scholar 

  • Atitar MF, Ismail AA, Bahneman D, Afanasev D, Emeline AV (2015) Mesoporous TiO2 nanocrystals as efficient photocatalysts: impact of calcination temperatures and phase transformations on photocatalytic performances. Chem Eng J 264:417–424

    Google Scholar 

  • Bamwenda GR, Tsubota S, Nakamura T, Haruta M (1997) The influence of the preparation methods on the catalytic activity of platinum and gold supported on TiO2 for CO oxidation. Catal Lett 44:83–87

    CAS  Google Scholar 

  • Cardenas-Lizana F, Gomez-Quero S, Idriss H, Keane MA (2009) Gold particle size effects in the gas-phase hydrogenation of m-dinitrobenzene over Au/TiO2. J Catal 268:223–234

    CAS  Google Scholar 

  • Faisal M, Khan SB, Rahman MM, Ismail AA, Asiri AM, Al-Sayari SA (2014) Development of efficient chemi-sensor and photocatalyst based on wet-chemically prepared ZnO nanorods for environmental remediation. J Taiwan Inst Chem Eng 45:2733–2741

    CAS  Google Scholar 

  • Gregg SJ, Sing KSW (1982) Adsorption, surface area and porosity. Academic Press, London

    Google Scholar 

  • Huang C, Wang I, Lin Y, Tseng Y, Lu C (2010) Visible light photocatalytic degradation of nitric oxides on PtOx-modified TiO2 via sol–gel and impregnation method. J Mol Catal A Chem 316:163–170

    CAS  Google Scholar 

  • Ishibai Y, Sato J, Akita S, Nishikawa T, Miyagishi S (2007) Photocatalytic oxidation of NOx by Pt-modified TiO2 under visible light irradiation. J Photochem Photobiol A Chem 188:106–111

    CAS  Google Scholar 

  • Ismail AA, Bahnemann DW (2011) One-step synthesis of mesoporous platinum/titania nanocomposites as photocatalyst with enhanced its photocatalytic activity for methanol oxidation. Green Chem 13:428–435

    CAS  Google Scholar 

  • Ismail AA, Ibrahim IA (2008) Impact of supercritical drying and heat treatment on physical properties of titania/silica aerogel monolithic and its applications. Appl Catal A Gen 346:200–205

    CAS  Google Scholar 

  • Ismail AA, Bahnemann DW, Bannat I, Wark M (2009) Gold nanoparticles on mesoporous interparticle networks of titanium dioxide nanocrystals for enhanced photonic efficiencies. J Phys Chem C 113:7429–7435

    CAS  Google Scholar 

  • Ismail AA, Bahnemann DW, Robben L, Wark M (2010) Palladium doped porous titania photocatalysts: impact of mesoporous order and crystallinity. Chem Mater 22:108–116

    CAS  Google Scholar 

  • Ismail AA, Abdelfattah I, Robben L, Bouzid H, Al-Sayari SA, Bahnemann DW (2015) Photocatalytic degradation of Imazapyr using mesoporous Al2O3-TiO2 nanocomposites. Sep Purif Technol 145:147–153

    CAS  Google Scholar 

  • Ismail AA, Mohamed RM, Fouad OA, Ibrahim IA (2006) Synthesis of nanosized ZSM‐5 using different alumina sources. Crystal Research and Technology, 41(2):145–149

  • Ismail AA, Abdelfattah I, Helal A, Al-Sayari SA, Robben L, Bahnemann DW (2016) Ease synthesis of mesoporous WO3-TiO2 nanocomposites with enhanced photocatalytic performance under visible light and UV illumination. J Hazard Mater 307:43–54

  • Ismail AA, Abdelfattah I, Faisal M, Helal A (2018) Efficient photodecomposition of herbicide Imazapyr over mesoporous Ga2O3-TiO2 nanocomposites. J Hazard Mater 342:519–526

    CAS  Google Scholar 

  • Jiang J, Yu J, Cao S (2016) Au/PtO nanoparticle-modified g-C 3 N 4 for plasmon-enhanced photocatalytic hydrogen evolution under visible light. J Colloid Interface Sci 461:56–63

    CAS  Google Scholar 

  • Jiang Z, Li J, Liao W, Fan G, Yu H, Chen L, Su Z (n.d.) Synthesis and characterization of the optical properties of Pt-TiO2 Nanotubes. J Nanomater 2017:6759853

  • Jing D, Zhang Y, Guo L (2005) Study on the synthesis of Ni doped mesoporous TiO2 and its photocatalytic activity for hydrogen evolution in aqueous methanol solution. Chem Phys Lett 415:74–78

    CAS  Google Scholar 

  • Kibombo HS, Wu C-M, Peng R, Baltrusaitis J, Koodali RT (2013) Investigation of the role of platinum oxide for the degradation of phenol under simulated solar irradiation. Appl Catal B Environ 136-137:248–259

    CAS  Google Scholar 

  • Kim S, Hwang SJ, Choi WY (2005) Visible light active platinum-ion-doped TiO2 photocatalyst. J Phys Chem B 109:24260–24267

    CAS  Google Scholar 

  • Kim W, Tachikawa T, Kim H (2014) Visible light photocatalytic activities of nitrogen and platinum-doped TiO2: synergistic effects of co-dopants. Appl Catal B Environ 147:642–650

    CAS  Google Scholar 

  • Kumaresan L, Prabhu A, Palanichamy M, Arumugam E, Murugesan V (2011) Synthesis and characterization of Zr4+, La3+ and Ce3+ doped mesoporous TiO2: evaluation of their photocatalytic activity. J Hazard Mater 186:1183–1192

    CAS  Google Scholar 

  • Mkhalid IA, Fierro JLG, Mohamed RM, Alshahri AA (2020) Photocatalytic visible-light-driven removal of the herbicide imazapyer using nanocomposites based on mesoporous TiO2 modified with Gd2O3. Appl Nanosci 10:3773–3786. https://doi.org/10.1007/s13204-020-01479-8

    Article  CAS  Google Scholar 

  • Mohamed RM (2009) Characterization and catalytic properties of nano-sized Pt metal catalyst on TiO2-SiO2 synthesized by photo-assisted deposition and impregnation methods. J Mater Process Technol 209(1):577–583

    CAS  Google Scholar 

  • Mohamed RM, Aazam E (2013) Synthesis and characterization of P-doped TiO2 thin-films for photocatalytic degradation of butyl benzyl phthalate under visible-light irradiation. Chin J Catal 34(6):1267–1273

    CAS  Google Scholar 

  • Mohamed RM, Salam MA (2014) Photocatalytic reduction of aqueous mercury (II) using multi-walled carbon nanotubes/Pd-ZnO nanocomposite. Mater Res Bull 50:85–90

    CAS  Google Scholar 

  • Mohamed RM, Mkhalid IA, Baeissa ES, Al-Rayyani MA (2012) Photocatalytic degradation of methylene blue by Fe/ZnO/SiO2 nanoparticles under visible light. J Nanotechnol 2012:1–5

    Google Scholar 

  • Mohamed RM, Shawky A, Mkhalid IA (2017) Facile synthesis of MgO and Ni-MgO nanostructures with enhanced adsorption of methyl blue dye. J Phys Chem Solids 101:50–57

    CAS  Google Scholar 

  • Mohamed RM, Mkhalid IA, Shawky A (2019) Facile synthesis of Pt–In2O3/BiVO4 nanospheres with improved visible-light photocatalytic activity. J Alloys Compd 775:542–548

    CAS  Google Scholar 

  • Nolan M (2011) Surface modification of TiO2 with metal oxide nanoclusters: a route to composite photocatalytic materials. Chemical Communications 47(30):8617–8619

  • Pretzer LA, Carlson PJ, Boyd JE (2008) The effect of Pt oxidation state and concentration on the photocatalytic removal of aqueous ammonia with Pt modified titania. J Photochem Photobiol A Chem 200:246–253

    CAS  Google Scholar 

  • Rajeshwar K, Osugi M, Chanmanee W, Chenthamarakshan C, Zanoni M, Kajitvichyanukul P, Krishnan AR (2008) Heterogeneous photocatalytic treatment of organic dyes in air and aqueous media. J Photochem Photobiol C Photochem Rev 9:171–192

    CAS  Google Scholar 

  • Robben L, Ismail AA, Lohmeier SJ, Feldhoff A, Bahnemann DW, Buhl J-C (2012) Facile synthesis of highly ordered mesoporous and well crystalline TiO2: Impact of different gas atmosphere and calcinations temperature on structural properties. Chem Mater 24:1268–1275

    CAS  Google Scholar 

  • Sekiya T, Ohta S, Kamei S, Hanakawa M, Kurita S (2001) Raman spectroscopy and phase transition of anatase TiO2 under high pressure. J Phys Chem Solids 62:717–721

    CAS  Google Scholar 

  • Shannon RD (1976) Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallogr A32:751–767

    CAS  Google Scholar 

  • Souza FL, Teodoro TQ, Vasconcelos VM, Migliorini FL, Lima Gomes PCF, Ferreira NG, Baldan MR, Haiduke RLA, Lanza MRV (2014) Electrochemical oxidation of Imazapyr with BDD electrode in titanium substrate. Chemosphere 117:596–603

    CAS  Google Scholar 

  • Streal M, Horner DJ (2000) Adsorption of highly soluble herbicides from water using activated carbon and hypercrosslinked polymers. Trans IChemE Part B 78:363–382

    Google Scholar 

  • Tauc J, Grigorovici R, Vanuc A (1966) Electronic structure of amorphous germanium. Phys Status Solidi:15627–15637

  • Tayade RJ, Kulkarni RG, Jasra RV (2006) Transition metal ion impregnated mesoporous TiO2 for photocatalytic degradation of organic contaminants in water. Ind Eng Chem Res 45:5231–5238

    CAS  Google Scholar 

  • Uddin J, Peralta JE, Scuseria GE (2005) Density functional theory study of bulk platinum monoxide. Phys Rev B 71:155112

    Google Scholar 

  • Vargas S, Arroyo R, Haro E, Rodrguez R (1999) Effects of cationic dopants on the phase transition temperatures of titania prepared by the sol-gel method. J Mater Res 14:3932–3937

    CAS  Google Scholar 

  • Vijayan BK, Dimitrijevic NM, Wu J, Gray KA (2010) The effects of Pt doping on the structure and visible light photoactivity of titania nanotubes. J Phys Chem C 114:21262–21269

    CAS  Google Scholar 

  • Wang H, Wu Z, Liu Y, Wang Y (2009) Influences of various Pt dopants over surface platinized TiO2 on the photocatalytic oxidation of nitric oxide. Chemosphere 74:773–778

    CAS  Google Scholar 

  • Wang C, Fan H, Ren X, Wen Y, Wang W (2018) Highly dispersed PtO nanodots as efficient co-catalyst for photocatalytic hydrogen evolution. Appl Surf Sci 462:423–431

    CAS  Google Scholar 

  • Yang Y, Sugino O, Ohno T (2012) Band gap of β-PtO2 from first-principles. AIP Adv 2(022172):1–8

    Google Scholar 

Download references

Acknowledgments

This project was funded by the Deanship of Scientific Research (DSR) at King Abdulaziz University, Jeddah, Saudi Arabia under grant no. KEP-PhD-37-130-38. The authors, therefore, acknowledge with thanks DSR for technical and financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. A. Mkhalid.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Guest Editor: Sherif El-Eskandarany

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the topical collection: Nanotechnology in Arab Countries

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mkhalid, I.A., Fierro, J.L.G., Mohamed, R.M. et al. Impact of the PtO loading on mesoporous TiO2 nanoparticles for enhanced photodegradation of Imazapyr herbicide under simulated solar light. J Nanopart Res 22, 347 (2020). https://doi.org/10.1007/s11051-020-05072-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-020-05072-6

Keywords

Navigation