Skip to main content

Advertisement

Log in

Bisphosphonate-based surface biofunctionalization improves titanium biocompatibility

  • Biomaterials Synthesis and Characterization
  • Original Research
  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

A Publisher Correction to this article was published on 27 November 2020

This article has been updated

Abstract

Novel-biofunctionalized surfaces are required to improve the performance of endosseous implants, which are mainly related to the resistance against biocorrosion, as well as for the consideration of osteoinductive phenomena. Among different strategies, the use of bisphosphonate molecules as linkers between titanium dioxide (TiO2) surfaces and proteins is a distinctive approach, one in which bisphosphonate could play a role in the osseointegration. Thus, to address this issue, we proposed a novel biofunctionalization of TiO2 surfaces using sodium alendronate (ALN) as a linker and bovine serum albumin as the protein. Physicochemical analysis of the functionalized surfaces was performed using contact angle analyses and surface roughness measurements, which indicated an efficient functionalization. The biocompatibility of the functionalized surfaces was analyzed through the adhesion behavior of the pre-osteoblasts onto the samples. Overall, our data showed a significant improvement concerning the cell adhesion by modulating the adhesion cell-related set of genes. The obtained results show that for modified surfaces there is an increase of up to 100 times in the percentage of cells adhered when compared to the control, besides the extracellular matrix remodeling seemed to be an essential prerequisite for the early stages of cell adhesion on to the biomaterials, which was assayed by evaluating the matrix metalloproteinase activities as well as the gene activations. In the expressions of the Bsp and Bglap2 genes, for the group containing ALN (TiO2 + ALN), it was observed an increase in expression (approximately sixfold change) when compared to the control. Altogether, our data clearly showed that the bisphosphonate-biofunctionalized surface enhanced the biocompatibility of titanium and claims to further progress preclinical in vivo experimentation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Change history

  • 27 November 2020

    A Correction to this paper has been published: https://doi.org/10.1007/s10856-020-06470-x

References

  1. Gemini-Piperni S, Takamori ER, Sartoretto SC, Paiva KBS, Granjeiro JM, de Oliveira RC. et al. Cellular behavior as a dynamic field for exploring bone bioengineering: a closer look at cell–biomaterial interface. Arch Biochem Biophys. 2014;561:88–98. http://www.ncbi.nlm.nih.gov/pubmed/24976174.

  2. Asri RIM, Harun WSW, Samykano M, Lah NAC, Ghani SAC, Tarlochan F. et al. Corrosion and surface modification on biocompatible metals: a review. Mater Sci Eng C. 2017;77:1261–74. https://www.sciencedirect.com/science/article/pii/S0928493116325619?via%3Dihub.

    CAS  Google Scholar 

  3. Chen Q, Thouas GA. Metallic implant biomaterials. Mater Sci Eng R Reports. 2015;87:1–57. https://www.sciencedirect.com/science/article/pii/S0927796X14001077.

    Google Scholar 

  4. Morais JM, Papadimitrakopoulos F, Burgess DJ. Biomaterials/tissue interactions: possible solutions to overcome foreign body response. AAPS J. 2010;12:188–96. http://www.ncbi.nlm.nih.gov/pubmed/20143194.

    CAS  Google Scholar 

  5. van der Eerden BCJ, Teti A, Zambuzzi WF. Bone, a dynamic and integrating tissue. Arch Biochem Biophys. 2014;561:1–2. http://www.ncbi.nlm.nih.gov/pubmed/25157441.

    Google Scholar 

  6. Smeets R, Stadlinger B, Schwarz F, Beck-Broichsitter B, Jung O, Precht C. et al. Impact of dental implant surface modifications on osseointegration. Biomed Res Int. 2016;2016:1–16. http://www.hindawi.com/journals/bmri/2016/6285620/.

    Google Scholar 

  7. Novaes AB, de Souza SLS, de Barros RRM, Pereira KKY, Iezzi G, Piattelli A. Influence of implant surfaces on osseointegration. Braz Dent J. 2010;21:471–81. http://www.ncbi.nlm.nih.gov/pubmed/21271036.

    Google Scholar 

  8. Alves SA, Bayón R, de Viteri VS, Garcia MP, Igartua A, Fernandes MH. et al. Tribocorrosion behavior of calcium- and phosphorous-enriched titanium oxide films and study of osteoblast interactions for dental implants. J Bio-Tribo-Corros. 2015;1:23. http://link.springer.com/10.1007/s40735-015-0023-y.

    Google Scholar 

  9. Zambuzzi WF, Bonfante EA, Jimbo R, Hayashi M, Andersson M, Alves G, et al. Nanometer scale titanium surface texturing are detected by signaling pathways involving transient FAK and Src activations. www.plosone.org.

  10. Fernandes CJC, Bezerra F, Ferreira MR, Andrade AFC, Pinto TS, Zambuzzi WF. Nano hydroxyapatite-blasted titanium surface creates a biointerface able to govern Src-dependent osteoblast metabolism as prerequisite to ECM remodeling. Colloids Surf B Biointerfaces. 2018;163:321–8. http://www.ncbi.nlm.nih.gov/pubmed/29329077.

  11. Rossi MC, Bezerra FJB, Silva RA, Crulhas BP, Fernandes CJC, Nascimento AS, et al. Titanium-released from dental implant enhances pre-osteoblast adhesion by ROS modulating crucial intracellular pathways. J Biomed Mater Res A. 2017;105:2968–2976. https://pubmed.ncbi.nlm.nih.gov/28639351/.

  12. Baroncelli M, Fuhler GM, Peppel J, Zambuzzi WF, Leeuwen JP, Eerden BCJ. et al. Human mesenchymal stromal cells in adhesion to cell-derived extracellular matrix and titanium: comparative kinome profile analysis. J Cell Physiol. 2019;234:2984–96. http://www.ncbi.nlm.nih.gov/pubmed/30058720.

    CAS  Google Scholar 

  13. Zambuzzi WF, Coelho PG, Alves GG, Granjeiro JM. Intracellular signal transduction as a factor in the development of “Smart” biomaterials for bone tissue engineering. Biotechnol Bioeng. 2011;108:1246–50. http://www.ncbi.nlm.nih.gov/pubmed/21351075.

  14. Silva-Bermudez P, Muhl S, Rodil SE. A comparative study of fibrinogen adsorption onto metal oxide thin films. Appl Surf Sci. 2013;282:351–62. https://www.sciencedirect.com/science/article/pii/S0169433213010714.

    CAS  Google Scholar 

  15. Silva-Bermudez P, Rodil SE. An overview of protein adsorption on metal oxide coatings for biomedical implants. Surf Coat Technol. 2013;233:147–58. https://www.sciencedirect.com/science/article/pii/S0257897213003721.

    CAS  Google Scholar 

  16. Kumari A, Yadav SK, Yadav SC. Biodegradable polymeric nanoparticles based drug delivery systems. Colloids Surf B Biointerfaces. 2010;75:1–18. http://www.ncbi.nlm.nih.gov/pubmed/19782542.

  17. Sul Y-T, Johansson CB, Petronis S, Krozer A, Jeong Y, Wennerberg A. et al. Characteristics of the surface oxides on turned and electrochemically oxidized pure titanium implants up to dielectric breakdown: the oxide thickness, micropore configurations, surface roughness, crystal structure and chemical composition. Biomaterials. 2002;23:491–501. https://www.sciencedirect.com/science/article/pii/S0142961201001314.

    CAS  Google Scholar 

  18. Liu X, Chu PK, Ding C. Surface modification of titanium, titanium alloys, and related materials for biomedical applications. Mater Sci Eng R Rep. 2004;47:49–121. https://www.sciencedirect.com/science/article/pii/S0927796X0400124X.

    Google Scholar 

  19. Akram Z, Abduljabbar T, Kellesarian SV, Abu Hassan MI, Javed F, Vohra F. Efficacy of bisphosphonate as an adjunct to nonsurgical periodontal therapy in the management of periodontal disease: a systematic review. Br J Clin Pharmacol. 2017;83:444–54. http://www.ncbi.nlm.nih.gov/pubmed/27718252.

    CAS  Google Scholar 

  20. Ramalho-Ferreira G, Faverani LP, Momesso GAC, Luvizuto ER, de Oliveira Puttini I, Okamoto R. Effect of antiresorptive drugs in the alveolar bone healing. A histometric and immunohistochemical study in ovariectomized rats. Clin Oral Investig. 2017;21:1485–94. http://www.ncbi.nlm.nih.gov/pubmed/27460567.

    Google Scholar 

  21. Apostu D, Lucaciu O, Lucaciu GDO, Crisan B, Crisan L, Baciut M, et al. Systemic drugs that influence titanium implant osseointegration. Drug Metab Rev. Taylor and Francis Ltd; 2017. p 92–104.

  22. Guimarães MB, Antes TH, Dolacio MB, Pereira DD, Marquezan M. Does local delivery of bisphosphonates influence the osseointegration of titanium implants? A systematic review. Int J Oral Maxillofac Surg. Churchill Livingstone; 2017. p 1429–36.

  23. Galezowska J. Interactions between clinically used bisphosphonates and bone mineral: from coordination chemistry to biomedical applications and beyond. ChemMedChem. 2018:289–302. http://www.ncbi.nlm.nih.gov/pubmed/29323467.

  24. Cui Y, Zhu T, Li D, Li Z, Leng Y, Ji X, et al. Bisphosphonate-functionalized scaffolds for enhanced bone regeneration. Adv Healthc Mater. 2019:1901073. https://onlinelibrary.wiley.com/doi/abs/10.1002/adhm.201901073.

  25. Abtahi J, Agholme F, Sandberg O, Aspenberg P. Effect of local vs. systemic bisphosphonate delivery on dental implant fixation in a model of osteonecrosis of the jaw. J Dent Res. 2013;92:279–83. http://www.ncbi.nlm.nih.gov/pubmed/23264610.

    CAS  Google Scholar 

  26. Alqhtani NR, Logan NJ, Meghji S, Leeson R, Brett PM. Low dose effect of bisphosphonates on hMSCs osteogenic response to titanium surface in vitro. Bone Rep. 2017;6:64–9. http://www.ncbi.nlm.nih.gov/pubmed/28377984.

    CAS  Google Scholar 

  27. Thavornyutikarn B, Wright PFA, Feltis B, Kosorn W, Turney TW. Bisphosphonate activation of crystallized bioglass scaffolds for enhanced bone formation. Mater Sci Eng C. 2019;104:109937.

    CAS  Google Scholar 

  28. Ossipov DA. Bisphosphonate-modified biomaterials for drug delivery and bone tissue engineering. Expert Opin Drug Deliv. Taylor and Francis Ltd; 2015. p 1443–58.

  29. van Houdt CIA, Gabbai-Armelin PR, Lopez-Perez PM, Ulrich DJO, Jansen JA, Renno ACM, et al. Alendronate release from calcium phosphate cement for bone regeneration in osteoporotic conditions. Sci Rep. 2018;8:1–13.

    Google Scholar 

  30. Anbazhagan E, Rajendran A, Natarajan D, Kiran MS, Pattanayak DK. Divalent ion encapsulated nano titania on Ti metal as a bioactive surface with enhanced protein adsorption. Colloids Surf B Biointerfaces. 2016;143:213–23. http://www.ncbi.nlm.nih.gov/pubmed/27011351.

    CAS  Google Scholar 

  31. Zheng D, Neoh KG, Kang E-T. Immobilization of alendronate on titanium via its different functional groups and the subsequent effects on cell functions. J Colloid Interface Sci. 2017;487:1–11. http://www.ncbi.nlm.nih.gov/pubmed/27743540.

    CAS  Google Scholar 

  32. Bronze-Uhle ES, Dias LFG, Trino LD, Matos AA, de Oliveira RC, Lisboa-Filho PN. Physicochemical bisphosphonate immobilization on titanium dioxide thin films surface by UV radiation for bio-application. Surf Coatings Technol. 2019;357:36–47. https://www.sciencedirect.com/science/article/pii/S0257897218310223.

    CAS  Google Scholar 

  33. Baler K, Martin OA, Carignano MA, Ameer GA, Vila JA, Szleifer I. Electrostatic unfolding and interactions of albumin driven by pH changes: a molecular dynamics study. J Phys Chem B. 2014;118:921–30. http://pubs.acs.org/doi/10.1021/jp409936v.

    CAS  Google Scholar 

  34. Vetri V, Librizzi F, Leone M, Militello V. Thermal aggregation of bovine serum albumin at different pH: comparison with human serum albumin. Eur Biophys J. 2007;36:717–25. http://www.ncbi.nlm.nih.gov/pubmed/17624524.

    CAS  Google Scholar 

  35. Trino LD, Bronze-Uhle ES, Ramachandran A, Lisboa-Filho PN, Mathew MT, George A. Titanium surface bio-functionalization using osteogenic peptides: Surface chemistry, biocompatibility, corrosion and tribocorrosion aspects. J Mech Behav Biomed Mater. 2018;81:26–38.

    CAS  Google Scholar 

  36. Martins MCL, Ratner BD, Barbosa MA. Protein adsorption on mixtures of hydroxyl- and methyl-terminated alkanethiols self-assembled monolayers. J Biomed Mater Res. 2003;67A:158–71. http://www.ncbi.nlm.nih.gov/pubmed/14517873.

    CAS  Google Scholar 

  37. Mosmann T. Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Methods. 1983;65:55–63. http://www.ncbi.nlm.nih.gov/pubmed/6606682.

    CAS  Google Scholar 

  38. Lowry OH, Rosebrough NJ, Farr AL, Randall RJ. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951;193:265–75. http://www.ncbi.nlm.nih.gov/pubmed/14907713.

    CAS  Google Scholar 

  39. Lefebvre V, Peeters-Joris C, Vaes G. Production of gelatin-degrading matrix metalloproteinases (‘type IV collagenases’) and inhibitors by articular chondrocytes during their dedifferentiation by serial subcultures and under stimulation by interleukin-1 and tumor necrosis factor alpha. Biochim Biophys Acta. 1991;1094:8–18. http://www.ncbi.nlm.nih.gov/pubmed/1653026.

    CAS  Google Scholar 

  40. Fernandes CJC, Bezerra F, do Carmo M, das D, Feltran GS, Rossi MC, et al. CoCr-enriched medium modulates integrin-based downstream signaling and requires a set of inflammatory genes reprograming in vitro. J Biomed Mater Res A. 2018;106:839–49.

    CAS  Google Scholar 

  41. Bezerra F, Ferreira MR, Fontes GN, da Costa Fernandes CJ, Andia DC, Cruz NC, et al. Nano hydroxyapatite-blasted titanium surface affects pre-osteoblast morphology by modulating critical intracellular pathways. Biotechnol Bioeng. 2017;114:1888–98.

    CAS  Google Scholar 

  42. Heim H-P. Specialized injection molding techniques. William Andrew, Oxford, UK, Hardcover; ISBN: 9780323341004; 2015.

  43. Ramamoorthy M, Vanderbilt D, King-Smith RD. First-principles calculations of the energetics of stoichiometric TiO2 surfaces. Phys Rev B Condens Matter.1994;49:16721–7.

    CAS  Google Scholar 

  44. Zhang D, Yang M, Dong S. Hydroxylation of rutile TiO2 (110) surface enhancing its reducing power for photocatalysis. https://arxiv.org/ftp/arxiv/papers/1510/1510.02938.pdf.

  45. da Costa Fernandes CJ, Ferreira MR, Bezerra FJB, Zambuzzi WF. Zirconia stimulates ECM-remodeling as a prerequisite to pre-osteoblast adhesion/proliferation by possible interference with cellular anchorage. J Mater Sci Mater Med. 2018;29. https://doi.org/10.1007/s10856-018-6041-9.

  46. Fernandes GVO, Cavagis ADM, Ferreira CV, Olej B, de Souza Leão M, Yano CL. et al. Osteoblast adhesion dynamics: a possible role for ROS and LMW-PTP. J Cell Biochem. 2014;115:1063–9. http://www.ncbi.nlm.nih.gov/pubmed/24123071.

    CAS  Google Scholar 

  47. Zambuzzi WF, Milani R, Teti A. Expanding the role of Src and protein-tyrosine phosphatases balance in modulating osteoblast metabolism: lessons from mice. Biochimie. 2010;92:327–32. http://www.ncbi.nlm.nih.gov/pubmed/20083150.

    CAS  Google Scholar 

  48. Zambuzzi WF, Bruni-Cardoso A, Granjeiro JM, Peppelenbosch MP, de Carvalho HF, Aoyama H. et al. On the road to understanding of the osteoblast adhesion: cytoskeleton organization is rearranged by distinct signaling pathways. J Cell Biochem. 2009;108:134–44. http://doi.wiley.com/10.1002/jcb.22236.

    CAS  Google Scholar 

  49. Milani R, Ferreira CV, Granjeiro JM, Paredes-Gamero EJ, Silva RA, Justo GZ.et al. Phosphoproteome reveals an atlas of protein signaling networks during osteoblast adhesion. J Cell Biochem. 2010;109. http://www.ncbi.nlm.nih.gov/pubmed/20127719.

  50. Accorsi-Mendonça T, Zambuzzi WF, Paiva KB, da Silva Paiva KB, Lauris JRP, Cestari TM. et al. Expression of metalloproteinase 2 in the cell response to porous demineralized bovine bone matrix. J Mol Histol. 2005;36:311–6. http://www.ncbi.nlm.nih.gov/pubmed/16200464.

    Google Scholar 

  51. Zambuzzi WF, Paiva KBS, Menezes R, Oliveira RC, Taga R, Granjeiro JM. MMP-9 and CD68+ cells are required for tissue remodeling in response to natural hydroxyapatite. J Mol Histol. 2009;40:301–9. http://link.springer.com/10.1007/s10735-009-9241-2.

    CAS  Google Scholar 

  52. Rodriguez-Contreras A, Guadarrama Bello D, Nanci A. Surface nanoporosity has a greater influence on osteogenic and bacterial cell adhesion than crystallinity and wettability. Appl Surf Sci. 2018;445:255–61.

    CAS  Google Scholar 

  53. Wenzel RN. Resistance of solid surfaces to wetting by water. Ind Eng Chem. 1936;28:988–94.

    CAS  Google Scholar 

  54. Krishna Alla R, Ginjupalli K, Upadhya N, Shammas M, Krishna Ravi R, Sekhar R. Surface roughness of implants: a review. Trends Biomater Artif Organs. 2011. http://www.sbaoi.org.

  55. Yetim AF. Investigation of wear behavior of titanium oxide films, produced by anodic oxidation, on commercially pure titanium in vacuum conditions. Surf Coat Technol. 2010;205:1757–63. https://www.sciencedirect.com/science/article/pii/S0257897210007280.

    CAS  Google Scholar 

  56. De Bruyn H, Christiaens V, Doornewaard R, Jacobsson M, Cosyn J, Jacquet W. et al. Implant surface roughness and patient factors on long-term peri-implant bone loss. Periodontol 2000. 2017;73:218–27. http://www.ncbi.nlm.nih.gov/pubmed/28000269.

    Google Scholar 

  57. Sezin M, Croharé L, Ibañez JC. Microscopic study of surface microtopographic characteristics of dental implants. Open Dent J. 2016;10:139–47. http://www.ncbi.nlm.nih.gov/pubmed/27335615.

    CAS  Google Scholar 

  58. Kang HR, da Costa Fernandes CJ, da Silva RA, Constantino VRL, Koh IHJ, Zambuzzi WF. Mg–Al and Zn–Al layered double hydroxides promote dynamic expression of marker genes in osteogenic differentiation by modulating mitogen-activated protein kinases. Adv Healthc Mater. 2018;7:1–12.

    Google Scholar 

Download references

Acknowledgements

This work was financially supported by the Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP: 2014/22689-3, 2017/02366-3, and 2017/15035-5), Coordenação de Aperfeiçoamento de Pessoal de Nível Superior—Brazil (CAPES)—Finance Code 001, and CNPq—Conselho Nacional de Desenvolvimento Científico e Tecnológico.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paulo Noronha Lisboa-Filho.

Ethics declarations

Conflict of interest

This article has been partially supported by Brazilian funding agencies CNPq, FAPESP, and CAPES. There are no financial support and interest by any enterprise or industry associated with this work. No conflict of interest is also declared.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Albano, C.S., Gomes, A.M., da Silva Feltran, G. et al. Bisphosphonate-based surface biofunctionalization improves titanium biocompatibility. J Mater Sci: Mater Med 31, 109 (2020). https://doi.org/10.1007/s10856-020-06437-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10856-020-06437-y

Navigation