Skip to main content
Log in

Tissue engineering stent model with long fiber-reinforced thermoplastic technique

  • Engineering and Nano-engineering Approaches for Medical Devices
  • Original Research
  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

This study aims to construct tissue engineering stents by using the long fiber-reinforced thermoplastic (LFT) technique to develop artery stents. The experimental method combines fibers, the LFT technique, and electrospinning technique. First, the biodegradable polyvinyl alcohol yarns are twisted and coated in polycaprolactone/polyethylene glycol blends through the LFT technique. Next, the weft-knitting and heat treatment are used to establish the stent structure, after which poly(ethylene oxide) (PEO) is electrospun to coat the stents. The morphology, mechanical, and biological properties of tissue engineering stents are evaluated. The test results indicated that the use of the LFT technique retains the softness of filaments, which facilitates the subsequent weft-knitting process. The coating of blends and electrospinning of PEO have a positive influence on the tissue engineering stents, as demonstrated by the tensile strength of 59.93 N and compressive strength of 6.10 N. Moreover, the in vitro degradation of stents exhibits a stabilized process. The water contact angle is 20.33°, and the cell survival rate in 24 h is over 80%. The proposed tissue engineering stents are good candidates for artery stent structure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Fadaie M, Mirzaei E, Geramizadeh B, Asvar Z. Incorporation of nanofibrillated chitosan into electrospun PCL nanofibers makes scaffolds with enhanced mechanical and biological properties. Carbohydr Polym. 2018;199:628–40. https://doi.org/10.1016/j.carbpol.2018.07.061.

    Article  CAS  Google Scholar 

  2. Nakielski P, Pierini F. Blood interactions with nano- and microfibers: recent advances, challenges and applications in nano- and microfibrous hemostatic agents. Acta Biomater 2019;84:63–76. https://doi.org/10.1016/j.actbio.2018.11.029.

    Article  CAS  Google Scholar 

  3. Zhu Y, Hu C, Li B, Yang H, Cheng Y, Cui W. A highly flexible paclitaxel-loaded poly(ε-caprolactone) electrospun fibrous-membrane-covered stent for benign cardia stricture. Acta Biomater. 2013;9:8328–36. https://doi.org/10.1016/j.actbio.2013.06.004.

    Article  CAS  Google Scholar 

  4. Feng W, Liu P, Yin H, Gu Z, Wu Y, Zhu W, et al. Heparin and rosuvastatin calcium-loaded poly(l-lactide-co-caprolactone) nanofiber-covered stent-grafts for aneurysm treatment. N J Chem. 2017;41:9014–23. https://doi.org/10.1039/C7NJ01214D.

    Article  CAS  Google Scholar 

  5. Zhang Y, Wang J, Xiao J, Fang T, Hu N, Li M, et al. An electrospun fiber-covered stent with programmable dual drug release for endothelialization acceleration and lumen stenosis prevention. Acta Biomater. 2019;94:295–305. https://doi.org/10.1016/j.actbio.2019.06.008.

    Article  CAS  Google Scholar 

  6. Gupta P, Lorentz KL, Haskett DG, Cunnane EM, Ramaswamy AK, Weinbaum JS, et al. Bioresorbable silk grafts for small diameter vascular tissue engineering applications: In vitro and in vivo functional analysis. Acta Biomater. 2020;105:146–58. https://doi.org/10.1016/j.actbio.2020.01.020.

    Article  CAS  Google Scholar 

  7. Pangesty A, Todo M. Development of cylindrical microfibrous scaffold using melt-spinning method for vascular tissue engineering. Mater Lett. 2018;228:334–8. https://doi.org/10.1016/j.matlet.2018.06.046.

    Article  CAS  Google Scholar 

  8. Feng J. Preparation and properties of poly(lactic acid) melt spun fiber aligned and disordered scaffolds. Mater Lett. 2017;192:153–6. https://doi.org/10.1016/j.matlet.2016.12.035.

    Article  CAS  Google Scholar 

  9. Chen W, Sun B, Zhu T, Gao Q, Morsi Y, El-Hamshary H, et al. Groove fibers based porous scaffold for cartilage tissue engineering application. Mater Lett. 2017;192:44–7. https://doi.org/10.1016/j.matlet.2017.01.027.

    Article  CAS  Google Scholar 

  10. Mohammadi Z, Mesgar AS-M, Rasouli-Disfani F. Reinforcement of freeze-dried chitosan scaffolds with multiphasic calcium phosphate short fibers. J Mech Behav Biomed Mater. 2016;61:590–9. https://doi.org/10.1016/j.jmbbm.2016.04.022.

    Article  CAS  Google Scholar 

  11. Feng J, Yan X, Lin K, Wang S, Luo J, Wu Y. Characterization of poly(lactic acid) melt spun fiber aligned scaffolds prepared with hot pressing method. Mater Lett. 2018;214:178–81. https://doi.org/10.1016/j.matlet.2017.12.005.

    Article  CAS  Google Scholar 

  12. Tardajos MG, Cama G, Dash M, Misseeuw L, Gheysens T, Gorzelanny C, et al. Chitosan functionalized poly-ε-caprolactone electrospun fibers and 3D printed scaffolds as antibacterial materials for tissue engineering applications. Carbohydr Polym. 2018;191:127–35. https://doi.org/10.1016/j.carbpol.2018.02.060.

    Article  CAS  Google Scholar 

  13. Khan F, Tanaka M, Ahmad SR. Fabrication of polymeric biomaterials: a strategy for tissue engineering and medical devices. J Mater Chem B. 2015;3:8224–49. https://doi.org/10.1039/C5TB01370D.

    Article  CAS  Google Scholar 

  14. Wang J, Yuan B, Han RPS. Modulus of elasticity of randomly and aligned polymeric scaffolds with fiber size dependency. J Mech Behav Biomed Mater. 2018;77:314–20. https://doi.org/10.1016/j.jmbbm.2017.09.016.

    Article  CAS  Google Scholar 

  15. Cortez Tornello PR, Caracciolo PC, Igartúa Roselló JI, Abraham GA. Electrospun scaffolds with enlarged pore size: porosimetry analysis. Mater Lett. 2018;227:191–3. https://doi.org/10.1016/j.matlet.2018.05.072.

    Article  CAS  Google Scholar 

  16. Bose S, Vahabzadeh S, Bandyopadhyay A. Bone tissue engineering using 3D printing. Mater Today. 2013;16:496–504. https://doi.org/10.1016/j.mattod.2013.11.017.

    Article  CAS  Google Scholar 

  17. Goel A, Chawla KK, Vaidya UK, Koopman M, Dean DR. Effect of UV exposure on the microstructure and mechanical properties of long fiber thermoplastic (LFT) composites. J Mater Sci. 2008;43:4423–32. https://doi.org/10.1007/s10853-007-2444-6.

    Article  CAS  Google Scholar 

  18. Schmid B, Fritz H-G. Injection molding of long-fiber-reinforced thermoplastics. In: Füller J, Grüninger G, Schulte K, Bunsell AR, Massiah A, editors. Developments in the Science and Technology of Composite Materials: Fourth European Conference on Composite Materials September 25–28, 1990 Stuttgart-Germany. Dordrecht: Springer Netherlands; 1990. pp. 149–54.

    Chapter  Google Scholar 

  19. Hou L-D, Li Z, Pan Y, Sabir M, Zheng Y-F, Li L. A review on biodegradable materials for cardiovascular stent application. Front Mater Sci. 2016;10:238–59. https://doi.org/10.1007/s11706-016-0344-x.

    Article  Google Scholar 

  20. McCullen SD, Haslauer CM, Loboa EG. Fiber-reinforced scaffolds for tissue engineering and regenerative medicine: use of traditional textile substrates to nanofibrous arrays. J Mater Chem. 2010;20:8776–88. https://doi.org/10.1039/C0JM01443E.

    Article  CAS  Google Scholar 

  21. Eskitoros-Togay ŞM, Bulbul YE, Tort S, Demirtaş Korkmaz F, Acartürk F, Dilsiz N. Fabrication of doxycycline-loaded electrospun PCL/PEO membranes for a potential drug delivery system. Int J Pharm. 2019;565:83–94. https://doi.org/10.1016/j.ijpharm.2019.04.073.

    Article  CAS  Google Scholar 

  22. Wang Z, Liang R, Jiang X, Xie J, Cai P, Chen H, et al. Electrospun PLGA/PCL/OCP nanofiber membranes promote osteogenic differentiation of mesenchymal stem cells (MSCs). Mater Sci Eng C. 2019;104:109796. https://doi.org/10.1016/j.msec.2019.109796.

    Article  CAS  Google Scholar 

  23. Cho D, Bae WJ, Joo YL, Ober CK, Frey MW. Properties of PVA/HfO2 hybrid electrospun fibers and calcined inorganic HfO2 fibers. J Phys Chem C. 2011;115:5535–44. https://doi.org/10.1021/jp111964f.

    Article  CAS  Google Scholar 

  24. Hiob MA, She S, Muiznieks LD, Weiss AS. Biomaterials and modifications in the development of small-diameter vascular grafts. ACS Biomater Sci Eng. 2017;3:712–23. https://doi.org/10.1021/acsbiomaterials.6b00220.

    Article  CAS  Google Scholar 

  25. Allaf RM, Albarahmieh EA, AlHamarneh BM. Solid-state compounding of immiscible PCL-PEO blend powders for molding processes. J Mech Behav Biomed Mater. 2019;97:198–211. https://doi.org/10.1016/j.jmbbm.2019.05.023.

    Article  CAS  Google Scholar 

  26. Trakoolwannachai V, Kheolamai P, Ummartyotin S. Characterization of hydroxyapatite from eggshell waste and polycaprolactone (PCL) composite for scaffold material. Compos Part B. 2019;173:106974. https://doi.org/10.1016/j.compositesb.2019.106974.

    Article  CAS  Google Scholar 

  27. Peng X, Zhang Y, Chen Y, Li S, He B. Synthesis and crystallization of well-defined biodegradable miktoarm star PEG-PCL-PLLA copolymer. Mater Lett. 2016;171:83–6. https://doi.org/10.1016/j.matlet.2016.02.057.

    Article  CAS  Google Scholar 

  28. Douglas P, Albadarin AB, Sajjia M, Mangwandi C, Kuhs M, Collins MN, et al. Effect of poly ethylene glycol on the mechanical and thermal properties of bioactive poly(ε-caprolactone) melt extrudates for pharmaceutical applications. Int J Pharm. 2016;500:179–86. https://doi.org/10.1016/j.ijpharm.2016.01.036.

    Article  CAS  Google Scholar 

  29. Yang C-S, Wu H-C, Sun J-S, Hsiao H-M, Wang T-W. Thermo-induced shape-memory PEG-PCL copolymer as a dual-drug-eluting biodegradable stent. ACS Appl Mater Interfaces. 2013;5:10985–94. https://doi.org/10.1021/am4032295.

    Article  CAS  Google Scholar 

  30. Wang WZ, Nie W, Liu DH, Du HB, Zhou XJ, Chen L, et al. Macroporous nanofibrous vascular scaffold with improved biodegradability and smooth muscle cells infiltration prepared by dual phase separation technique. Int J Nanomed. 2018;13:7003–18. https://doi.org/10.2147/Ijn.S183463.

    Article  CAS  Google Scholar 

  31. Lin M-C, Lin J-H, Huang C-Y, Chen Y-S. Textile fabricated biodegradable composite stents with core-shell structure. Polym Test. 2020;81:106166. https://doi.org/10.1016/j.polymertesting.2019.106166.

    Article  CAS  Google Scholar 

  32. Santos-Coquillat A, Esteban-Lucia M, Martinez-Campos E, Mohedano M, Arrabal R, Blawert C, et al. PEO coatings design for Mg-Ca alloy for cardiovascular stent and bone regeneration applications. Mater Sci Eng C. 2019;105:110026. https://doi.org/10.1016/j.msec.2019.110026.

    Article  CAS  Google Scholar 

  33. Jing X, Mi H-Y, Turng L-S. Comparison between PCL/hydroxyapatite (HA) and PCL/halloysite nanotube (HNT) composite scaffolds prepared by co-extrusion and gas foaming. Mater Sci Eng C. 2017;72:53–61. https://doi.org/10.1016/j.msec.2016.11.049.

    Article  CAS  Google Scholar 

  34. DeMali KA, Sun X, Bui GA. Force transmission at cell–cell and cell–matrix adhesions. Biochemistry. 2014;53:7706–17. https://doi.org/10.1021/bi501181p.

    Article  CAS  Google Scholar 

  35. González-García C, Cantini M, Ballester-Beltrán J, Altankov G, Salmerón-Sánchez M. The strength of the protein-material interaction determines cell fate. Acta Biomater. 2018;77:74–84. https://doi.org/10.1016/j.actbio.2018.07.016.

    Article  CAS  Google Scholar 

  36. Türkkan S, Pazarçeviren AE, Keskin D, Machin NE, Duygulu Ö, Tezcaner A. Nanosized CaP-silk fibroin-PCL-PEG-PCL/PCL based bilayer membranes for guided bone regeneration. Mater Sci Eng C. 2017;80:484–93. https://doi.org/10.1016/j.msec.2017.06.016.

    Article  CAS  Google Scholar 

  37. Ma J, Lin L, Zuo Y, Zou Q, Ren X, Li J, et al. Modification of 3D printed PCL scaffolds by PVAc and HA to enhance cytocompatibility and osteogenesis. RSC Adv. 2019;9:5338–46. https://doi.org/10.1039/C8RA06652C.

    Article  CAS  Google Scholar 

  38. Liu KL, Widjaja E, Huang Y, Ng XW, Loo SCJ, Boey FYC, et al. A new insight for an old system: protein-peg colocalization in relation to protein release from PCL/PEG blends. Mol Pharm. 2011;8:2173–82. https://doi.org/10.1021/mp200513b.

    Article  CAS  Google Scholar 

  39. Ponjavic M, Nikolic MS, Nikodinovic-Runic J, Jeremic S, Stevanovic S, Djonlagic J. Degradation behaviour of PCL/PEO/PCL and PCL/PEO block copolymers under controlled hydrolytic, enzymatic and composting conditions. Polym Test. 2017;57:67–77. https://doi.org/10.1016/j.polymertesting.2016.11.018.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research project was financially supported by the Ministry of Science and Technology of Taiwan under contract Most 108-2221-E-009-135- and Most 105-2221-E-166-006.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yueh-Sheng Chen.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lin, MC., Lin, JH., Huang, CY. et al. Tissue engineering stent model with long fiber-reinforced thermoplastic technique. J Mater Sci: Mater Med 31, 107 (2020). https://doi.org/10.1007/s10856-020-06411-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10856-020-06411-8

Navigation