Skip to main content
Log in

Structural, Optical, Electrical, and Photocatalytic Properties of Nickel Cobaltite (NiCo2O4) Nanocomposite Fabricated by a Facile Microplasma Electrochemical Process

  • Original Research Article
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

This study reports the facile atmospheric pressure microplasma-assisted synthesis of NiCo2O4 nanocomposite with the cubic spinel phase. The prepared samples were investigated in terms of their structural, morphological, compositional, electrical and optical properties. It was observed that the spherically shaped NiCo2O4 nanostructures have a face-centered cubic (fcc) crystalline structure with a space group of Fd-3 m. Raman spectra revealed a blue shift in the A1g and E2g modes which can be attributed to the nano-sized effect of NiCo2O4. Electrical properties showed a semiconducting behavior which can be explained by the nearest-neighbor hopping (NNH) process. The photocatalytic activity against rhodamine B dye aqueous solution was studied, and significant degradation was achieved after 120 min of solar irradiation. This understanding will be helpful for the fabrication and design of NiCo2O4 nanostructure-based wastewater purification and energy storage nanodevices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. N.B. Grimm, S.H. Faeth, N.E. Golubiewski, C.L. Redman, J. Wu, X. Bai, and J.M. Briggs, Science 319, 756 (2008).

    Article  CAS  Google Scholar 

  2. J. Fahel, S. Kim, P. Durand, E. André, and C. Carteret, Dalton Trans. 45, 8224 (2016).

    Article  CAS  Google Scholar 

  3. Y. Zhang, M. Park, H.Y. Kim, B. Ding, and S.-J. Park, Appl. Surf. Sci. 384, 192 (2016).

    Article  CAS  Google Scholar 

  4. K. Nagaveni, M. Hegde, N. Ravishankar, G. Subbanna, and G. Madras, Langmuir 20, 2900 (2004).

    Article  CAS  Google Scholar 

  5. Z. Jiao, M. Wu, Z. Qin, and H. Xu, Nanotechnology 14, 458 (2003).

    Article  CAS  Google Scholar 

  6. X. Wang, R. Chen, L. Sun, and Z. Yu, Int. J. Electrochem. Sci. 9, 6834 (2014).

    Google Scholar 

  7. J. Lee, S. Mahendra, and P.J. Alvarez, ACS Nano 4, 3580 (2010).

    Article  CAS  Google Scholar 

  8. W. Li, K. Xu, G. Song, X. Zhou, R. Zou, J. Yang, Z. Chen, and J. Hu, CrystEngComm 16, 2335 (2014).

    Article  CAS  Google Scholar 

  9. M. Amini, B. Pourbadiei, T.P.A. Ruberu, and L.K. Woo, New J. Chem. 38, 1250 (2014).

    Article  CAS  Google Scholar 

  10. C. Yu, K. Wang, P. Yang, S. Yang, C. Lu, Y. Song, S. Dong, J. Sun, and J. Sun, Appl. Surf. Sci. 420, 233 (2017).

    Article  CAS  Google Scholar 

  11. S. Shahabuddin, N.M. Sarih, F.H. Ismail, M.M. Shahid, and N.M. Huang, RSC Adv. 5, 83857 (2015).

    Article  CAS  Google Scholar 

  12. G.A. Ali, O.A. Fouad, and S.A. Makhlouf, J. Alloys Compd. 579, 606 (2013).

    Article  CAS  Google Scholar 

  13. A. Louardi, A. Rmili, F. Ouachtari, A. Bouaoud, B. Elidrissi, and H. Erguig, J. Alloys Compd. 509, 9183 (2011).

    Article  CAS  Google Scholar 

  14. M. Srivastava, M.E. Uddin, J. Singh, N.H. Kim, and J.H. Lee, J. Alloys Compd. 590, 266 (2014).

    Article  CAS  Google Scholar 

  15. Y. Zhang and S.-J. Park, J. Catal. 355, 1 (2017).

    Article  CAS  Google Scholar 

  16. E. Pajootan, M. Arami, and M. Rahimdokht, Ind. Eng. Chem. Res. 53, 16261 (2014).

    Article  CAS  Google Scholar 

  17. Q. Wang, D. Zhang, Y. Wu, T. Li, A. Zhang, and M. Miao, Energy Technol. 5, 1449 (2017).

    Article  CAS  Google Scholar 

  18. S. Liu, J. Wu, J. Zhou, G. Fang, and S. Liang, Electrochim. Acta 176, 1 (2015).

    Article  CAS  Google Scholar 

  19. C. Zhang, C. Lei, C. Cen, S. Tang, M. Deng, Y. Li, and Y. Du, Electrochim. Acta 260, 814 (2018).

    Article  CAS  Google Scholar 

  20. T. Chen, Y. Fan, G. Wang, J. Zhang, H. Chuo, and R. Yang, NANO 11, 1650015 (2016).

    Article  CAS  Google Scholar 

  21. C. Jia, F. Yang, L. Zhao, G. Cheng, and G. Yang, Nanoscale Res. Lett. 14, 10 (2019).

    Article  CAS  Google Scholar 

  22. N. Balke, S.M. Neumayer, J.A. Brehm, M.A. Susner, B.J. Rodriguez, S. Jesse, S.V. Kalinin, S.T. Pantelides, M.A. McGuire, and P. Maksymovych, ACS Appl. Mater. Interfaces. 10, 27188 (2018).

    Article  CAS  Google Scholar 

  23. N. Folchert, M. Rienäcker, A. Yeo, B. Min, R. Peibst, and R. Brendel, Sol. Energy Mater. Sol. Cells 185, 425 (2018).

    Article  CAS  Google Scholar 

  24. J. Tang, Z. Zou, and J. Ye, Chem. Mater. 16, 1644 (2004).

    Article  CAS  Google Scholar 

  25. D. Wang, Z. Zou, and J. Ye, Chem. Phys. Lett. 373, 191 (2003).

    Article  CAS  Google Scholar 

  26. M. Valenzuela, P. Bosch, J. Jiménez-Becerrill, O. Quiroz, and A. Páez, J. Photochem. Photobiol. A Chem. 148, 177 (2002).

    Article  CAS  Google Scholar 

  27. Y. Bessekhouad and M. Trari, Int. J. Hydrog. Energy 27, 357 (2002).

    Article  CAS  Google Scholar 

  28. F. Zheng, D. Zhu, and Q. Chen, ACS Appl. Mater. Interfaces. 6, 9256 (2014).

    Article  CAS  Google Scholar 

  29. Y. Lee, M.G. Kim, and J. Cho, Nano Lett. 8, 957 (2008).

    Article  CAS  Google Scholar 

  30. R. Ding, L. Qi, M. Jia, and H. Wang, Nanoscale 6, 1369 (2014).

    Article  CAS  Google Scholar 

  31. X. Xia, Y. Wang, D. Wang, Y. Zhang, Z. Fan, J. Tu, H. Zhang, and H.J. Fan, Nano Energy 20, 244 (2016).

    Article  CAS  Google Scholar 

  32. Z.-Q. Liu, G.-F. Chen, P.-L. Zhou, N. Li, and Y.-Z. Su, J. Power Sources 317, 1 (2016).

    Article  CAS  Google Scholar 

  33. M. Cabo, E. Pellicer, E. Rossinyol, O. Castell, S. Surinach, and M.D. Baró, Cryst. Growth Des. 9, 4814 (2009).

    Article  CAS  Google Scholar 

  34. P. Patil, L. Kadam, and C. Lokhande, Thin Solid Films 272, 29 (1996).

    Article  CAS  Google Scholar 

  35. C.-S. Cheng, M. Serizawa, H. Sakata, and T. Hirayama, Mater. Chem. Phys. 53, 225 (1998).

    Article  CAS  Google Scholar 

  36. F. Morin, Phys. Rev. 93, 1199 (1954).

    Article  CAS  Google Scholar 

  37. C. Windisch Jr, G.J. Exarhos, K.F. Ferris, M.H. Engelhard, and D.C. Stewart, Thin Solid Films 398, 45 (2001).

    Article  Google Scholar 

  38. G. Huang, L. Zhang, F. Zhang, and L. Wang, Nanoscale 6, 5509 (2014).

    Article  CAS  Google Scholar 

  39. Y. Chen, J. Zhu, B. Qu, B. Lu, and Z. Xu, Nano Energy 3, 88 (2014).

    Article  CAS  Google Scholar 

  40. L. Gu, L. Qian, Y. Lei, Y. Wang, J. Li, H. Yuan, and D. Xiao, J. Power Sources 261, 317 (2014).

    Article  CAS  Google Scholar 

  41. J.-G. Wang, L.-N. Jin, X.-Y. Qian, and M.-D. Dong, J. Nanosci. Nanotechnol. 16, 8635 (2016).

    Article  CAS  Google Scholar 

  42. X. Wang, Y. Liu, Z. Hu, Y. Chen, W. Liu, and G. Zhao, J. Hazard. Mater. 169, 1061 (2009).

    Article  CAS  Google Scholar 

  43. W. Zhang, X. Li, Z. Yang, X. Tang, Y. Ma, M. Li, N. Hu, H. Wei, and Y. Zhang, Nanotechnology 27, 265703 (2016).

    Article  CAS  Google Scholar 

  44. V.A. Svetlichnyi, A.V. Shabalina, I.N. Lapin, and D.A. Goncharova, Applications of Laser Ablation–Thin Film Deposition, Nanomaterial Synthesis and Surface Modification (Croatia: InTech, 2016), p. 245.

    Google Scholar 

  45. F. Su, X. Qiu, F. Liang, M. Tanaka, T. Qu, Y. Yao, W. Ma, B. Yang, Y. Dai, K. Hayashi, and T. Watanabe, Nanomaterials 8, 684 (2018).

    Article  CAS  Google Scholar 

  46. G. Hao, W. Wang, G. Gao, Q. Zhao, and J. Li, J. Energy Chem. 24, 271 (2015).

    Article  Google Scholar 

  47. S. Sahoo and C.S. Rout, Adv. Mater. Lett. 88, 847 (2017).

    Article  CAS  Google Scholar 

  48. M. Shimada, W.N. Wang, and K. Okuyama, Chem. Vapor Depos. 16, 151 (2010).

    Article  CAS  Google Scholar 

  49. X. Yan, F. Zou, X.P. Lu, G. He, M.J. Shi, Q. Xiong, X. Gao, Z. Xiong, Y. Li, F.Y. Ma, and M. Yu, Appl. Phys. Lett. 95, 083702 (2009).

    Article  CAS  Google Scholar 

  50. P. Bruggeman and C. Leys, J. Phys. D Appl. Phys. 42, 053001 (2009).

    Article  CAS  Google Scholar 

  51. J. Hieda, N. Saito, and O. Takai, J. Vac. Sci. Technol. A Vac. Surf. Films 26, 854 (2008).

    Article  CAS  Google Scholar 

  52. T. Iqbal, M. Mukhtar, M. Khan, R. Khan, R. Zaman, H. Mahmood, and M. Zaka-ul-Islam, Mater. Res. Express 3, 125019 (2016).

    Article  CAS  Google Scholar 

  53. T. Iqbal, A. Aziz, M. Khan, S. Andleeb, H. Mahmood, A.A. Khan, R. Khan, and M. Shafique, Mater. Sci. Eng., B 228, 153 (2018).

    Article  CAS  Google Scholar 

  54. T. Iqbal, A. ur Rehman, M. Khan, M. Shafique, P. Ahmad, H. Mahmood, M. Naeem, and J. Iqbal, J. Mater. Sci. Mater. Electron. (2020). https://doi.org/10.1007/s10854-020-04219-4.

    Article  Google Scholar 

  55. A. Ammari, B. Bellal, N. Zebbar, B. Benrabah, and M. Trari, Thin Solid Films 632, 66 (2017).

    Article  CAS  Google Scholar 

  56. S. Kandalkar, J. Gunjakar, C. Lokhande, and O.-S. Joo, J. Alloys Compd. 478, 594 (2009).

    Article  CAS  Google Scholar 

  57. M.T. Makhlouf, B. Abu-Zied, and T. Mansoure, J. Nanopart. 2013 (2013).

  58. G.A. Babu, G. Ravi, and Y. Hayakawa, Appl. Phys. A 119, 219 (2015).

    Article  CAS  Google Scholar 

  59. B. Cui, H. Lin, Y.-Z. Liu, J.-B. Li, P. Sun, X.-C. Zhao, and C.-J. Liu, J. Phys. Chem. C 113, 14083 (2009).

    Article  CAS  Google Scholar 

  60. Z.-Q. Liu, K. Xiao, Q.-Z. Xu, N. Li, Y.-Z. Su, H.-J. Wang, and S. Chen, RSC Adv. 3, 4372 (2013).

    Article  CAS  Google Scholar 

  61. J.-H. Zhong, A.-L. Wang, G.-R. Li, J.-W. Wang, Y.-N. Ou, and Y.-X. Tong, J. Mater. Chem. 22, 5656 (2012).

    Article  CAS  Google Scholar 

  62. J.P. Mensing, T. Lomas, and A. Tuantranont, Electrochim. Acta 263, 17 (2018).

    Article  CAS  Google Scholar 

  63. Q. Wang, Q. Yao, J. Chang, and L. Chen, J. Mater. Chem. 22, 17612 (2012).

    Article  CAS  Google Scholar 

  64. C.-W. Tang, C.-B. Wang, and S.-H. Chien, Thermochim. Acta 473, 68 (2008).

    Article  CAS  Google Scholar 

  65. F.-C. Chiu, J.-J. Wang, J.Y.-M. Lee, and S.C. Wu, J. Appl. Phys. 81, 6911 (1997).

    Article  CAS  Google Scholar 

  66. L. Mai, C. Lao, B. Hu, J. Zhou, Y. Qi, W. Chen, E. Gu, and Z. Wang, J. Phys. Chem. B 110, 18138 (2006).

    Article  CAS  Google Scholar 

  67. S. Karmakar, S. Varma, and D. Behera, J. Alloys Compd. 757, 49 (2018).

    Article  CAS  Google Scholar 

  68. H. Han, C. Davis III, and J.C. Nino, J. Phys. Chem. C 118, 9137 (2014).

    Article  CAS  Google Scholar 

  69. Y. Fujishiro, K. Hamamoto, O. Shiono, S. Katayama, and M. Awano, J. Mater. Sci. Mater. Electron. 15, 769 (2004).

    Article  CAS  Google Scholar 

  70. L. Hu, L. Wu, M. Liao, X. Hu, and X. Fang, Adv. Funct. Mater. 22, 998 (2012).

    Article  CAS  Google Scholar 

  71. C. Pan and Y. Zhu, Environ. Sci. Technol. 44, 5570 (2010).

    Article  CAS  Google Scholar 

  72. M. Hassanpour, H. Safardoust-Hojaghan, and M. Salavati-Niasari, J. Mol. Liq. 229, 293 (2017).

    Article  CAS  Google Scholar 

  73. F. Motahari, M.R. Mozdianfard, F. Soofivand, and M. Salavati-Niasari, RSC Adv. 4, 27654 (2014).

    Article  CAS  Google Scholar 

  74. T. Iqbal, M. Khan, and H. Mahmood, Mater. Lett. 224, 59 (2018).

    Article  CAS  Google Scholar 

  75. M. Xue, L. Huang, J.-Q. Wang, Y. Wang, L. Gao, J.-H. Zhu, and Z.-G. Zou, Nanotechnology 19, 185604 (2008).

    Article  CAS  Google Scholar 

  76. X. Tian, C. Tian, Y. Nie, C. Dai, C. Yang, N. Tian, Z. Zhou, Y. Li, and Y. Wang, Chem. Eng. J. 331, 144 (2018).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. A. Khan.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shafique, M., Iqbal, T., Khan, M.A. et al. Structural, Optical, Electrical, and Photocatalytic Properties of Nickel Cobaltite (NiCo2O4) Nanocomposite Fabricated by a Facile Microplasma Electrochemical Process. J. Electron. Mater. 50, 629–639 (2021). https://doi.org/10.1007/s11664-020-08573-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-020-08573-1

Keywords

Navigation