Skip to main content
Log in

Effect of Structural Features on Ionic Conductivity and Dielectric Response of PVA Proton Conductor-Based Solid Polymer Electrolytes

  • Original Research Article
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

In this study, the effect of structure on the ionic conductivity and dielectric response of polyvinyl alcohol solid polymer electrolyte films doped with ammonium nitrate (NH4NO3) was investigated. Structural studies show that the solid polymer electrolytes in a suitable salt ratio enhance the amorphous fraction of the host matrix and facilitate the fast movement of H-ions, resulting in the enhancement of electrical conductivity. The highest ionic conductivity at room temperature (5.17 × 10−5 S/cm) was achieved by incorporating 30 wt.% of NH4NO3, which shows the maximum ion dissociation in the host matrix due to ion–polymer interaction. The reduction in the ionic conductivity at higher salt concentrations (above 30 wt.%) is the consequence of a decrease in the carrier concentration and its movement, respectively, due to the formation of ion pairs and a reduction in the amorphous fraction of the system. A broad asymmetric peak of the imaginary part of the electrical modulus suggests a temperature-dependent non-Debye relaxation process for the present system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. S.B. Aziz, O.G. Abdullah, and M.A. Rasheed, J. Mater. Sci.: Mater. Electron. 28, 12873 (2017).

    CAS  Google Scholar 

  2. M.H. Suhail, O.G. Abdullah, and G.A. Kadhim, J. Sci. Adv. Mater. Devices 4, 143 (2019).

    Article  Google Scholar 

  3. H.T. Ahmed, V.J. Jalal, D.A. Tahir, A.H. Mohamad, and O.G. Abdullah, Results Phys. 15, 102735 (2019).

    Article  Google Scholar 

  4. M.S. Michael, M.M.E. Jacob, S.R.S. Prabaharan, and S. Radhakrishna, Solid State Ionics 98, 167 (1997).

    Article  CAS  Google Scholar 

  5. S. Rajendran, R.S. Babu, and M.U. Rani, Bull. Mater. Sci. 34, 1525 (2011).

    Article  CAS  Google Scholar 

  6. N. Rajeswari, S. Selvasekarapandian, S. Karthikeyan, C. Sanjeeviraja, Y. Iwai, and J. Kawamura, Ionics 19, 1105 (2013).

    Article  CAS  Google Scholar 

  7. A. Karmakar and A. Ghosh, AIP Adv. 4, 087112 (2014).

    Article  CAS  Google Scholar 

  8. S. Das and A. Ghosh, J. Appl. Phys. 119, 095101 (2016).

    Article  CAS  Google Scholar 

  9. S.B. Aziz, O.G. Abdullah, M.A. Rasheed, and H.M. Ahmed, Polymers 9, 187 (2017).

    Article  CAS  Google Scholar 

  10. Y.A.K. Salman, O.G. Abdullah, R.R. Hanna, and S.B. Aziz, Int. J. Electrochem. Sci. 13, 3185 (2018).

    Article  CAS  Google Scholar 

  11. O.G. Abdullah, R.R. Hanna, Y.A.K. Salman, and S.B. Aziz, J. Inorg. Organomet. Polym Mater. 28, 1432 (2018).

    Article  CAS  Google Scholar 

  12. S.K. Patla, R. Ray, K. Asokan, and S. Karmakar, J. Appl. Phys. 123, 125102 (2018).

    Article  CAS  Google Scholar 

  13. O.G. Abdullah, S.B. Aziz, and M.A. Rasheed, Ionics 24, 777 (2018).

    Article  CAS  Google Scholar 

  14. H.T. Ahmed and O.G. Abdullah, J. Sci. Adv. Mater. Devices 5, 125 (2020).

    Article  Google Scholar 

  15. M. Hema, S. Selvasekarapandian, D. Arunkumar, A. Sakunthala, and H. Nithya, J. Non-Cryst. Solids 355, 84 (2009).

    Article  CAS  Google Scholar 

  16. H.T. Ahmed and O.G. Abdullah, Results Phys. 16, 102861 (2020).

    Article  Google Scholar 

  17. H. Horibe, Y. Hosokawa, H. Oshiro, Y. Sasaki, S. Takahashi, A. Kono, T. Nishiyama, and T. Danno, Polym. J. 45, 1195 (2013).

    Article  CAS  Google Scholar 

  18. T. Eriksson, A. Mace, Y. Manabe, M. Yoshizawa-Fujita, Y. Inokuma, D. Brandell, and J. Mindemark, J. Electrochem. Soc. 167, 070537 (2020).

    Article  Google Scholar 

  19. H.J. Woo, S.R. Majid, and A.K. Arof, Mater. Chem. Phys. 134, 755 (2012).

    Article  CAS  Google Scholar 

  20. A.H. Mohamad, O.G. Abdullah, and S.R. Saeed, Results Phys. 16, 102898 (2020).

    Article  Google Scholar 

  21. A.G. Bishop, D.R. MacFarlane, D. McNaughton, and M. Forsyth, Solid State Ionics 85, 129 (1996).

    Article  CAS  Google Scholar 

  22. H.T. Ahmed and O.G. Abdullah, Polymers 11, 853 (2019).

    Article  CAS  Google Scholar 

  23. M.L. Verma and H.D. Sahu, Ionics 23, 2339 (2017).

    Article  CAS  Google Scholar 

  24. S.B. Aziz, O.G. Abdullah, S.A. Hussein, and H.M. Ahmed, Polymers 9, 622 (2017).

    Article  CAS  Google Scholar 

  25. O.G. Abdullah, J. Mater. Sci.: Mater. Electron. 27, 12106 (2016).

    CAS  Google Scholar 

  26. S.F. Bdewi, O.G. Abdullah, B.K. Aziz, and A.A.R. Mutar, J. Inorg. Organomet. Polym Mater. 26, 326 (2016).

    Article  CAS  Google Scholar 

  27. V. Moniha, M. Alagar, S. Selvasekarapandian, B. Sundaresan, and G. Boopathi, J. Non-Cryst. Solids 481, 424 (2018).

    Article  CAS  Google Scholar 

  28. N.E.A. Shuhaimi, L.P. Teo, S.R. Majid, and A.K. Arof, Synth. Met. 160, 1040 (2010).

    Article  CAS  Google Scholar 

  29. N.E.A. Shuhaimi, S.R. Majid, and A.K. Arof, Mater. Res. Innov. 13, 239 (2009).

    Article  CAS  Google Scholar 

  30. M.F.Z. Kadir, S.R. Majid, and A.K. Arof, Electrochim. Acta 55, 1475 (2010).

    Article  CAS  Google Scholar 

  31. M.F.Z. Kadir, Z. Aspanut, R. Yahya, and A.K. Arof, Mater. Res. Innov. 15, s164 (2011).

    Article  Google Scholar 

  32. N. Reddeppa, A.K. Sharma, V.V.R.N. Rao, and W. Chen, Microelectron. Eng. 112, 57 (2013).

    Article  CAS  Google Scholar 

  33. S.B. Aziz, S. Al-zangana, H.J. Woo, M.F.Z. Kadir, and O.G. Abdullah, Results Phys. 11, 826 (2018).

    Article  Google Scholar 

  34. M.N. Chai and M.I.N. Isa, Int. J. Polym. Anal. Charact. 18, 280 (2013).

    Article  CAS  Google Scholar 

  35. A.R. Polu, H.W. Rhee, and D.K. Kim, J. Mater. Sci.: Mater. Electron. 26, 8548 (2015).

    CAS  Google Scholar 

  36. R.J. Sengwa, S. Sankhla, and S. Choudhary, Colloid Polym. Sci. 287, 1013 (2009).

    Article  CAS  Google Scholar 

  37. S.B. Aziz, M.G. Faraj, and O.G. Abdullah, Sci. Rep. 8, 14308 (2018).

    Article  CAS  Google Scholar 

  38. R. Khalil, Appl. Phys. A 123, 422 (2017).

    Article  CAS  Google Scholar 

  39. O.G. Abdullah and S.A. Saleem, J. Electron. Mater. 45, 5910 (2016).

    Article  CAS  Google Scholar 

  40. O.G. Abdullah, R.R. Hanna, and Y.A.K. Salman, Bull. Mater. Sci. 42, 64 (2019).

    Article  CAS  Google Scholar 

  41. F. Croce, S. Sacchetti, and B. Scrosati, J. Power Sources 161, 560 (2006).

    Article  CAS  Google Scholar 

  42. V. Parameswaran, N. Nallamuthu, P. Devendran, E.R. Nagarajan, and A. Manikandan, Phys. B Condens. Matter 515, 89 (2017).

    Article  CAS  Google Scholar 

  43. M.H. Buraidah, L.P. Teo, S.R. Majid, and A.K. Arof, Phys. B 404, 1373 (2009).

    Article  CAS  Google Scholar 

  44. R.J. Sengwa and S. Choudhary, Express Polym. Lett. 4, 559 (2010).

    Article  CAS  Google Scholar 

  45. Y.M. Yusof, M.F. Shukur, H.A. Illias, and M.F.Z. Kadir, Phys. Scr. 89, 035701 (2014).

    Article  CAS  Google Scholar 

  46. H.N. Chandrakala, B. Ramaraj, Shivakumaraiah, G.M. Madhu, and Siddaramaiah, J. Alloys Compd. 551, 531 (2013).

  47. O.G. Abdullah, Y.A.K. Salman, and S.A. Saleem, J. Mater. Sci.: Mater. Electron. 27, 3591 (2016).

    CAS  Google Scholar 

  48. A. Arya, M. Sadiq, and A.L. Sharma, Mater. Today Proc. 12, 554 (2019).

    Article  CAS  Google Scholar 

  49. O.G. Abdullah, R.R. Hanna, and Y.A.K. Salman, J. Mater. Sci.: Mater. Electron. 28, 10283 (2017).

    CAS  Google Scholar 

  50. W. Wang and P. Alexandridis, Polymers 8, 387 (2016).

    Article  CAS  Google Scholar 

  51. M. Muthuvinayagam and C. Gopinathan, Polymer 68, 122 (2015).

    Article  CAS  Google Scholar 

  52. M.H. Hamsan, M.F. Shukur, and M.F.Z. Kadir, Ionics 23, 1137 (2017).

    Article  CAS  Google Scholar 

  53. A. Arya and A.L. Sharma, J. Mater. Sci.: Mater. Electron. 29, 17903 (2018).

    CAS  Google Scholar 

  54. D.K. Pradhan, R.N.P. Choudhary, and B.K. Samantaray, Mater. Chem. Phys. 115, 557 (2009).

    Article  CAS  Google Scholar 

  55. P. Alaka and R. Govindaraj, Condens. Matter 3, 44 (2018).

    Article  CAS  Google Scholar 

  56. O.G. Abdullah, S.B. Aziz, and D.R. Saber, Int. J. Electrochem. Sci. 13, 11931 (2018).

    Article  CAS  Google Scholar 

  57. F. Yakuphanoglu, Phys. B Condens. Matter 393, 139 (2007).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Omed Gh. Abdullah.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saeed, M.A.M., Abdullah, O.G. Effect of Structural Features on Ionic Conductivity and Dielectric Response of PVA Proton Conductor-Based Solid Polymer Electrolytes. J. Electron. Mater. 50, 432–442 (2021). https://doi.org/10.1007/s11664-020-08577-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-020-08577-x

Keywords

Navigation