Skip to main content
Log in

Opto-electrochemistry of pyridopyrazino[2,3-b]indole Derivatives

  • Regular Article
  • Published:
Journal of Chemical Sciences Aims and scope Submit manuscript

Abstract

Here, pyridopyrazino[2,3-b]indole based D–A assembly was designed and synthesized with modulation of various electron-donating/withdrawing substituent and characterized by various spectroscopic methods. Pyridopyrazino[2,3-b]indole derivatives show inbuilt intramolecular charge transfer (ICT) transition which established D–A building in molecules and induces blue-green emission in the solution state. However, solid-state emission characteristics explore the emission property of some molecules towards aggregation-induced emission (AIE) effect which leads to the formation of emissive nano aggregates in THF/H2O mixture. Alteration of substituent on pyridopyrazino[2,3-b]indole segment effectively tune electrochemical property and resulting LUMO energy level was found to be comparable with reported electron transporting/n-type materials. These properties and good thermal stability indicate that molecules have the potential to be used as solid-state emitter and n-type materials in optoelectronic devices.

Graphical Abstract

Pyridopyrazino[2,3-b]indole derivatives possess inbuilt intramolecular charge-transfer to reveal donor-acceptor assembly within a molecule. Opto-electrochemical properties of it greatly influenced by an inductive and mesomeric effect caused by a substituted group. Strong solid-state emission owned by some molecule display AIE phenomenon. Additionally, LUMO value of derivatives exhibits electron-transporting ability hence could be used in organic electronics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Chart 1
Chart 2
Scheme 1
Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Tang C W and VanSlyke S A 1987 Organic electroluminescent diodes Appl. Phys. Lett. 51 913

    CAS  Google Scholar 

  2. Anthony J E 2008 The larger acenes: versatile organic semiconductors Angew. Chem. Int. Ed. 47 452

    CAS  Google Scholar 

  3. Tao S, Li L, Yu J, Jiang Y, Zhou Y, Lee C S, Lee S T, Zhang X and Kwon O 2009 Bipolar molecule as an excellent hole-transporter for organic-light emitting devices Chem. Mater. 21 1284

    CAS  Google Scholar 

  4. Kraft A, Grimsdale A C and Holmes A B 1998 Electroluminescent conjugated polymers seeing polymers in a new light Angew. Chem. Int. Ed. 37 402

    Google Scholar 

  5. Jenekhe S A and Osaheni J A 1994 Excimers and exciplexes of conjugated polymers Science 265 765

    CAS  PubMed  Google Scholar 

  6. Jayanty S and Radhakrishnan T P 2004 Enhanced fluorescence of remote functionalized diaminodicyanoquinodimethanes in the solid state and fluorescence switching in a doped polymer by solvent vapors Chem. Eur. J. 10 791

    CAS  Google Scholar 

  7. Jares-Erijman E A and Jovin T M 2003 FRET imaging Nat. Biotechnol. 21 1387

    CAS  PubMed  Google Scholar 

  8. Luo J, Xie Z, Lam J W Y, Cheng L, Chen H, Qiu C, Kwok H S, Zhan X, Liu Y, Zhu D and Tang B Z 2001 Aggregation-induced emission of 1-methyl-1,2,3,4,5-pentaphenylsilole Chem. Commun. 18 1740

    Google Scholar 

  9. Hong Y, Lama J W Y and Tang B Z 2009 Aggregation-induced emission: phenomenon, mechanism and applications Chem. Commun. 29 4332

    Google Scholar 

  10. Hong Y, Lam J W Y and Tang B Z 2011 Aggregation-induced emission Chem. Soc. Rev. 40 5361

    CAS  PubMed  Google Scholar 

  11. Sakamoto Y, Suzuki T, Kobayashi M, Gao Y, Fukai Y, Inoue Y, Sato F and Tokito S 2004 Perfluoropentacene: High-Performance p–n junctions and complementary circuits with pentacene J. Am. Chem. Soc. 126 8138

    CAS  PubMed  Google Scholar 

  12. Liang Z, Tang Q, Xu J and Miao Q 2011 Soluble and Stable N‐Heteropentacenes with High Field‐Effect Mobility Adv. Mater. 23 1535

    CAS  Google Scholar 

  13. Thomas K R J, Lin J T, Tao Y T and Ko C W 2001 Light-emitting carbazole derivatives: potential electroluminescent materials J. Am. Chem. Soc. 123 9404

    CAS  PubMed  Google Scholar 

  14. Zhuang J, Su W, Li W, Zhou Y, Shen Q and Zhou M 2012 Configuration effect of novel bipolar triazole/carbazole-based host materials on the performance of phosphorescent OLED devices Org. Electron. 13 2210

    CAS  Google Scholar 

  15. Thomas K R J, Lin J T, Tao Y T and Chuen C H 2002 Quinoxalines incorporating triarylamines: potential electroluminescent materials with tunable emission characteristics Chem. Mater. 14 2796

    CAS  Google Scholar 

  16. Chang D W, Ko S J, Kim J Y, Dai L and Baek J B 2012 Multifunctional quinoxaline containing small molecules with multiple electron-donating moieties: Solvatochromic and optoelectronic properties Synth. Met. 162 1169

    CAS  Google Scholar 

  17. Shaikh A M, Sharma B K and Kamble R M 2015 Synthesis, Photophysical, Electrochemical and Thermal Studies of Triarylamines based on benzo[g]quinoxalines J. Chem. Sci. 127 1571

    CAS  Google Scholar 

  18. Shaikh A M, Sharma B K and Kamble R M 2016 Electron-deficient molecules: photophysical, electrochemical, and thermal investigations of naphtho[2,3-f]quinoxaline-7,12-dione derivatives Chem. Heterocycl. Compd. 52 110

    CAS  Google Scholar 

  19. Shaikh A M, Sharma B K, Chacko S and Kamble R M 2016 Synthesis and optoelectronic investigations of triarylamines based on naphtho[2,3-f]quinoxaline-7,12-dione core as donor–acceptors for n-type materials RSC Adv. 6 60084

  20. Kanekar D N, Chacko S and Kamble R M 2019 Quinoxaline based amines as blue-orange emitters: Effect of modulating donor system on optoelectrochemical and theoretical properties Dyes Pigm. 167 36

    CAS  Google Scholar 

  21. Singh P S, Chacko S and Kamble R M 2019 The design and synthesis of 2,3-diphenylquinoxaline amine derivatives as yellow-blue emissive materials for optoelectrochemical study New J. Chem. 43 6973

    CAS  Google Scholar 

  22. Mahadik S S, Chacko S and Kamble R M 2019 2,3-Di(thiophen-2-yl)quinoxaline Amine Derivatives: Yellow-Blue Fluorescent Materials for Applications in Organic Electronics ChemistrySelect 4 10021

  23. Przyjazna B, Kucybała Z and Czkowski J P 2004 Development of new dyeing photoinitiators based on 6H-indolo[2,3-b]quinoxaline skeleton Polymer 45 2559

  24. Thomas K R J and Tyagi P 2010 Synthesis, Spectra, and Theoretical Investigations of the Triarylamines Based on 6H-indolo[2,3-b]quinoxaline J. Org. Chem. 75 8100

    CAS  PubMed  Google Scholar 

  25. Sharma B K, Shaikh A M, Chacko S and Kamble R M 2017 Synthesis, Spectral, Electrochemical and Theoretical Investigation of indolo[2,3-b]quinoxaline dyes derived from Anthraquinone for n–type materials J. Chem. Sci. 129 483

    CAS  Google Scholar 

  26. Kamble R M, Sharma B K, Shaikh A M and Chacko S 2018 Design, Synthesis, Opto–Electrochemical and Theoretical Investigation of Novel Indolo[2, 3-b]naphtho[2, 3-f]quinoxaline Derivatives for n–Type Materials in Organic Electronics ChemistrySelect 3 6907

  27. Singh P S, Badani P M and Kamble R M 2019 Impact of the donor substituent on the optoelectrochemical properties of 6H-indolo[2,3-b]quinoxaline amine derivatives New J. Chem. 43 19379

    CAS  Google Scholar 

  28. Kim R, Oh D H, Hwang M C, Baek J Y, Shin S C, Kwon S K and Kim Y H 2012 New Pyridopyrazine Skelecton-Based Electron-Transporting Materials J. Nanosci. Nanotechnol. 12 4370

    CAS  PubMed  Google Scholar 

  29. Zhao H, Wei Y, Zhao J and Wang M 2014 Three donor-acceptor polymeric electrochromic materials employing 2,3-bis(4-(decyloxy)phenyl)pyrido[4,3-b]pyrazine as acceptor unit and thiophene derivatives as donor units Electrochim. Acta 146 231

    CAS  Google Scholar 

  30. Okamoto T, Terada E, Kozaki M, Uchida M, Kikukawa S and Okada K 2003 Facile synthesis of 5,10-diaryl-5,10-dihydrophenazines and application to EL devices Org. Lett. 5 373

    CAS  Google Scholar 

  31. Kanekar D N, Chacko S and Kamble R M 2018 Synthesis, Opto-electrochemical and Theoretical Investigation of Pyrazino[2,3-b]phenazine Amines for Organic Electronics ChemistrySelect 3 4114

  32. Kanekar D N, Chacko S and Kamble R M 2020 Synthesis and investigation of the photophysical, electrochemical and theoretical properties of phenazine–amine based cyan blue-red fluorescent materials for organic electronics New J. Chem. 44 3278

    CAS  Google Scholar 

  33. Buu-Hoi N P and Saint-Ruf G 1960 Condensation of isatins with asymmetric aromatic and heterocyclic o-diamines Bull. Soc. Chim. Fr. 1920

    Google Scholar 

  34. Bergman J and Charlotta D 1996 Synthesis of pyridopyrazino[2,3-b] indoles and 10H-indolo [3,2-g]pteridins Recl. Trav. Chim. Pays-Basb. 115 31

    CAS  Google Scholar 

  35. Andrieu B M and Mdrour J Y 1998 Reactions of 3-([(Trifluoromethyl)sulfonyl]oxy)-lH-indole derivatives with diamines and carbon nucleophiles. Synthesis of 6H-Indolo[2,3-b]quinoxaline derivatives Tetrahedron 54 11095

  36. Alphonse F A, Routier S, Coudert G and Merour J Y 2001 A straightforward synthesis of pyridopyrazino[2,3-b]indoles and indolo[2,3-b]Quinoxaline Heterocycles 55 925

  37. Jamrozy K, Szymoniak K and Ostrowska K 2008 The regioselective synthesis of 2H-pyrido[2,3-b]pyrrolo[2,3-e]pyrazin-2-one Heterocycles 75 2275

  38. Dandia A, Parewa V, Maheshwari S and Rathore K S 2014 Cu doped CdS nanoparticles: A versatile and recoverable catalyst for chemoselective synthesis of indolo[2,3-b]quinoxaline derivatives under microwave irradiation J. Mol. Catal. A Chem. 394 244

    CAS  Google Scholar 

  39. Seth M, Bhaduri A P, Khanna N M and Dhar M L 1974 Antiamoebic agents. Syntheses of substituted indophenazines, azaindophenazines, and azaquinoxalines Indian J. Chem. 12 124

  40. Beauchard A, Ferandin Y, Frere S, Lozach O, Blairvacq M, Meijer L, Thiery V and Besson T 2006 Synthesis of novel 5-substituted indirubins as protein kinases inhibitors Bioorg. Med. Chem. 14 6434

    CAS  Google Scholar 

  41. Reichardt C 1979 Empirical parameters of solvent polarity as linear free-energy relationships Angew. Chem. Lnt. Ed. Engl. 18 98

    Google Scholar 

  42. Reichardt C 1994 Solvatochromic dyes as solvent polarity indicators Chem. Rev. 94 2319

    CAS  Google Scholar 

  43. Forbes W F and Audrey S R 1956 Light Absorption Studies: Part V. The Relation Of Mesomeric Effects And Ultraviolet Light Absorption Spectra Can. J. Chem. 34 1447

  44. Lohmann W 1974 Halogen-substitution effect on the optical absorption bands of uracil Z. Naturforsch. 29 493

    CAS  Google Scholar 

  45. Law K Y 1987 Squaraine chemistry: effects of structural changes on the absorption and multiple fluorescence emission of bis[4-(dimethylamino)phenyl]squaraine and its derivatives J. Phys. Chem. 91 5184

    CAS  Google Scholar 

  46. D’Aleo A, Saul A, Attaccalite C and Fages F 2019 Influence of halogen substitution on aggregation-induced near infrared emission of borondifluoride complexes of 2′-hydroxychalcones Mater. Chem. Front. 3 86

    Google Scholar 

  47. Norman S A, Michele E, Femando C, Teresa C, Maria B P and Arthur G 1997 Photochemistry and photocuring activities of novel substituted 4′-(4-methylphenylthio)benzophenones as photoinitiators J. Photochem. Photobiol. A 110 183

    Google Scholar 

  48. Pant G J N, Singha P, Rawat B S, Rawat M S M and Joshi G C 2011 Synthesis, characterization and fluorescence studies of 3,5-diaryl substituted 2-pyrazolines Spectrochim. Acta A 78 1075

    Google Scholar 

  49. Sun S S and Carl E B 2005 In Organic Photovoltaics: Mechanisms, Materials, and Device S S Sun and N S Sariciftci (Eds.) (Boca Raton: CRC Press/Taylor and Francis) p.183

  50. Kasai H, Nalwa H S, Oikawa H, Okada S, Matsuda H, Minami N, Kakuta A, Ono K, Mukoh A and Nakanishi H 1992 A Novel Preparation Method of Organic Microcrystals Jpn. J. Appl. Phys. 31 L1132

    CAS  Google Scholar 

  51. Yang Z W, Qin W Y L, Jacky S, Chen H Y, Herman D W I and Tang B Z 2013 Fluorescent pH sensor constructed from a heteroatom-containing luminogen with tunable AIE and ICT characteristics Chem. Sci. 4 3725

    CAS  Google Scholar 

  52. Luis S A, Manuela M, Bjorn O R and Roland L 1995 Theoretical Study of the Internal Charge Transfer in Aminobenzonitriles J. Am. Chem. Soc. 117 3189

    Google Scholar 

  53. Mei J, Leung N L C, Kwok R T K, Lam J W Y and Tang B Z 2015 Aggregation-induced emission: together we shine, united we soar! Chem. Rev. 115 11718

    CAS  PubMed  Google Scholar 

  54. Luo X, Li J, Li C, Heng L, Dong Y Q, Liu Z, Bo Z and Tang B Z 2011 Reversible switching of the emission of diphenyldibenzofulvenes by thermal and mechanical stimuli Adv. Mater. 23 3261

    CAS  Google Scholar 

  55. Tang B Z, Geng Y, Lam J W Y, Li B, Jing X, Wang X, Wang F, Pakhomov A and Zhang X X 1999 Processible Nanostructured Materials with Electrical Conductivity and Magnetic Susceptibility: Preparation and Properties of Maghemite/Polyaniline Nanocomposite Films Chem. Mater. 11 1581

    CAS  Google Scholar 

  56. Mei J, Wang J, Sun J Z, Zhao H, Yuan W, Deng C, Chen S, Herman H Y S, Lu P, Qin A, Kwok H S, Ma Y, Williams I D and Tang B Z 2012 Siloles symmetrically substituted on their 2,5-positions with electron-accepting and donating moieties: facile synthesis, aggregation-enhanced emission, solvatochromism, and device application Chem. Sci. 3 549

    CAS  Google Scholar 

  57. Fukuda T, Kanbara T, Yamamoto T, Ishikawa K, Takezoe H and Fukuda A 1996 Polyquinoxaline as an excellent electron injecting material for electroluminescent device Appl. Phys. Lett. 68 2346

    CAS  Google Scholar 

  58. Tonzola C J, Alam M M, Kaminsky W and Jenekhe S A 2003 New n-Type Organic Semiconductors: Synthesis, Single Crystal Structures, Cyclic Voltammetry, Photophysics, Electron Transport, and Electroluminescence of a Series of Diphenylanthrazolines J. Am. Chem. Soc. 125 13548

    CAS  PubMed  Google Scholar 

  59. Usta H, Facchetti A and Marks T J 2011 n-Channel Semiconductor Materials Design for Organic Complementary Circuits Acc. Chem. Res. 44 501

    CAS  Google Scholar 

  60. Sharma B K, Shaikh A M, Chacko S and Kamble R M 2018 Synthesis and optoelectronic investigation of triarylamines based on imidazoanthraquinone as donor–acceptors for n-type materials J. Chem. Sci. 130 49

    Google Scholar 

Download references

Acknowledgements

The authors are greatly thankful to Micro-Analytical Laboratory, Department of Chemistry, University of Mumbai, Mumbai for providing instrumental facilities, TIFR-Mumbai for providing MALDI-TOF.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rajesh M Kamble.

Ethics declarations

Conflict of interest

There are no conflicts to declare.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 4070 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singh, P.S., Shirgaonkar, A.J., Chawathe, B.K. et al. Opto-electrochemistry of pyridopyrazino[2,3-b]indole Derivatives. J Chem Sci 132, 150 (2020). https://doi.org/10.1007/s12039-020-01851-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12039-020-01851-9

Keywords

Navigation