Skip to main content

Advertisement

Log in

Effect of large load on the wear and corrosion behavior of high-strength EH47 hull steel in 3.5wt% NaCl solution with sand

  • Published:
International Journal of Minerals, Metallurgy and Materials Aims and scope Submit manuscript

Abstract

To simulate the wear and corrosion behavior of high-strength EH47 hull steel in a complicated marine environment in which seawater, sea ice, and sea sand coexist, accelerated wear and corrosion tests were performed in a laboratory setting using a tribometer. The effect of large loads on the behavior of abrasion and corrosion in a 3.5wt% NaCl solution with ice and sand to simulate a marine environment were investigated. The experimental results showed that the coefficient of friction (COF) decreases with increasing working load; meanwhile, the loading force and sand on the disk strongly influence the COF. The mechanisms of friction and the coupling effect of abrasion and corrosion in the 3.5wt% NaCl solution with sand were the wear and corrosion mechanisms; furthermore, the wear mechanism exerted the predominant effect.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J.C. Zhang, F.L. Zuo, J.Y. Jiang, H. Ma, and D. Song, Micro-structure and properties of seawater corrosion resistant rebar steel 00Cr10MoV, J. Chin. Soc. Corros. Prot., 36(2016), No. 4, p. 363.

    Google Scholar 

  2. H.Y. Guo, Y. Zhang, Y.C. He, and H.M. Xu, Development of low alloy seawater corrosion resistant steel, Iron Steel, 48(2013), No. 9, p. 71.

    CAS  Google Scholar 

  3. A. Toro, A. Sinatora, D.K. Tanaka, and A.P. Tschiptschin, Corrosion-erosion of nitrogen bearing martensitic stainless steels in seawater-quartz slurry, Wear, 251(2001), No. 1–12, p. 1257.

    Article  Google Scholar 

  4. M. Morcillo, I. Díaz, B. Chico, H. Cano, and D. de La Fuente, Weathering steels: From empirical development to scientific design. A review, Corros. Sci., 83(2014), p. 6.

    Article  CAS  Google Scholar 

  5. J. Geringer, J. Pellier, F. Cleymand, and B. Forest, Atomic force microscopy investigations on pits and debris related to frettingcorrosion between 316L SS and PMMA, Wear, 292–293(2012), p. 207.

    Article  Google Scholar 

  6. A. Iwabuchi, T. Sasaki, K. Hori, and Y. Tatsuyanagi, Tribological properties of SUS304 steel in seawater: Electrochemical approach to the wear behavior, JSME Int. J. Ser. I, 35(1992), No. 1, p. 117.

    CAS  Google Scholar 

  7. A. Iwabuchi, T. Sonoda, H. Yashiro, and T. Shimizu, Application of potential pulse method to the corrosion behavior of the fresh surface formed by scratching and sliding in corrosive wear, Wear, 225–229(1999), p. 181.

    Article  Google Scholar 

  8. A. Tahara and T. Shinohara, Influence of the alloy element on corrosion morphology of the low alloy steels exposed to the atmospheric environments, Corros. Sci., 47(2005), No. 10, p. 2589.

    Article  CAS  Google Scholar 

  9. S. Mischler, Triboelectrochemical techniques and interpretation methods in tribocorrosion: A comparative evaluation, Tribol. Int., 41(2008), No. 7, p. 573.

    Article  CAS  Google Scholar 

  10. ASTM International, ASTM Standard G119–09: Standard Guide for Determining Synergism between Wear and Corrosion, ASTM International, West Conshohocken, 2016.

    Google Scholar 

  11. G.D. Wang, Steel for Marine Applications, Chemical Industry Press, Beijing, 2017.

    Google Scholar 

  12. D. López, N.A. Falleiros, and A.P. Tschiptschin, Effect of nitrogen on the corrosion-erosion synergism in an austenitic stainless steel, Tribol. Int., 44(2011), No. 5, p. 610.

    Article  Google Scholar 

  13. A. Iwabuchi, T. Tsukamoto, Y. Tatsuyanagi, N. Kawahara, and T. Nonaka, Electrochemical approach to corrosive wear of SKD61 die steel in Na2SO4 solution, Wear, 156(1992), No. 2, p. 301.

    Article  CAS  Google Scholar 

  14. X.G. Li, Corrosion Behaviors and Mechanisms of Marine Engineering Materials, Chemical Industry Press, Beijing, 2017.

    Google Scholar 

  15. S.W. Watson, F.J. Friedersdorf, B.W. Madsen, and S.D. Cramer, Methods of measuring wear corrosion synergism, Wear, 181–183(1995), p. 476.

    Article  Google Scholar 

  16. X. Zhang, S.W. Yang, W.H. Zhang, H. Guo, and X.L. He, Influence of outer rust layers on corrosion of carbon steel and weathering steel during wet-dry cycles, Corros. Sci., 82(2014), p. 165.

    Article  CAS  Google Scholar 

  17. I. Serre, N. Celati, and R.M. Pradeilles-Duval, Tribological and corrosion wear of graphite ring against Ti6Al4V disk in artificial sea water, Wear, 252(2002), No. 9–10, p. 711.

    Article  CAS  Google Scholar 

  18. A. Iwabuchi, J.W. Lee, and M. Uchidate, Synergistic effect of fretting wear and sliding wear of Co-alloy and Ti-alloy in Hank’s solution, Wear, 263(2007), No. 1–6, p. 492.

    Article  CAS  Google Scholar 

  19. Y. Li, L. Qu, and F.H. Wang, The electrochemical corrosion behavior of TiN and (Ti,Al)N coatings in acid and salt solution, Corros. Sci., 45(2003), No. 7, p. 1367.

    Article  CAS  Google Scholar 

  20. N. Zaveri, M. Mahapatra, A. Deceuster, Y. Peng, L.J. Li, and A.H. Zhou, Corrosion resistance of pulsed laser-treated Ti-6Al-4V implant in simulated biofluids, Electrochim. Acta, 53(2008), No. 15, p. 5022.

    Article  CAS  Google Scholar 

  21. K. Selvama, A. Ayyagarib, H.S. Grewala, S. Mukherjeeb, and H.S. Aroraa, Enhancing the erosion-corrosion resistance of steel through friction stir processing, Wear, 386–387(2017), p. 129.

    Article  Google Scholar 

  22. Q.N. Song, Y.G. Zheng, S.L. Jiang, D.R. Ni, and Z.Y. Ma, Comparison of corrosion and cavitation erosion behaviors between the as-cast and friction-stir-processed nickel aluminum bronze, Corrosion, 69(2013), No. 11, p. 1111.

    Article  CAS  Google Scholar 

  23. Q.N. Song, Y.G. Zheng, D.R. Ni, and Z.Y. Ma, Corrosion and cavitation erosion behaviors of friction stir processed Ni-Al bronze: Effect of processing parameters and position in the stirred zone, Corrosion, 70(2014), No. 3, p. 261.

    Article  CAS  Google Scholar 

  24. Y.Y. Shen, Y.H. Dong, H.D. Li, X.T. Chang, D.S. Wang, Q.H. Li, and Y.S. Yin, The influence of low temperature on the corrosion of EH40 steel in a NaCl solution, Int. J. Electrochem. Sci., 13(2018), No. 7, p. 6310.

    Article  CAS  Google Scholar 

  25. B.G. Prakashaiah, D.V. Kumar, A.A. Pandith, A.N. Shetty, and B.E.A. Rani, Corrosion inhibition of 2024-T3 aluminum alloy in 3.5% NaCl by thiosemicarbazone derivatives, Corros. Sci., 136(2018), p. 326.

    Article  CAS  Google Scholar 

  26. M. Lebrini, F. Bentiss, H. Vezin, and M. Lagrenée, The inhibition of mild steel corrosion in acidic solutions by 2,5-bis(4-pyridyl)-1,3,4-thiadiazole: Structure-activity correlation, Corros. Sci., 48(2006), No. 5, p. 1279.

    Article  CAS  Google Scholar 

  27. O. Senhaji, R. Taouil, M.K. Skalli, M. Bouachrine, B. Hammouti, M. Hamidi, and S.S. Al-Deyab, Experimental and theoretical study for corrosion inhibition in normal hydrochloric acid solution by some new phophonated compounds, Int. J. Electrochem. Sci, 6(2011), No. 12, p. 6290.

    CAS  Google Scholar 

  28. K. Sasaki and G.T. Burstein, Observation of a threshold impact energy required to cause passive film rupture during slurry erosion of stainless steel, Philos. Mag. Lett., 80(2000), No. 7, p. 489.

    Article  CAS  Google Scholar 

  29. P. Henry, J. Takadoum, and P. Berçot, Tribocorrosion of 316L stainless steel and TA6V4 alloy in H2SO4 media, Corros. Sci., 51(2009), No. 6, p. 1308.

    Article  CAS  Google Scholar 

  30. N. Papageorgiou, A. von Bonin and N. Espallargas, Tribocorrosion mechanisms of NiCrMo-625 alloy: An electrochemical modeling approach, Tribol. Int., 73(2014), p. 177.

    Article  CAS  Google Scholar 

  31. S. Akonko, D.Y. Li, and M. Ziomek-Moroz, Effects of cathodic protection on corrosive wear of 304 stainless steel, Tribol. Lett., 18(2005), No. 3, p. 405.

    Article  CAS  Google Scholar 

  32. M.R. Bateni, J.A. Szpunar, X. Wang, and D.Y. Li, Wear and corrosion wear of medium carbon steel and 304 stainless steel, Wear, 260(2006), No. 1–2, p. 116.

    Article  CAS  Google Scholar 

  33. H.R. Wu, Q.L. Bi, S.Y. Zhu, J. Yang, and W.M. Liu, Friction and wear properties of Babbitt alloy 16-16-2 under sea water environment, Tribol. Int., 44(2011), No. 10, p. 1161.

    Article  CAS  Google Scholar 

  34. N.M. Lin, P. Zhou, H.W. Zhou, J.W. Guo, H.Y. Zhang, J.J. Zou, Y. Ma, P.J. Han, and B. Tang, Pack boronizing of P110 oil casing tube steel to combat wear and corrosion, Int. J. Electrochem. Sci., 10(2015), No. 3, p. 2694.

    CAS  Google Scholar 

  35. T. Balusamy and T. Nishimura, In-situ monitoring of local corrosion process of scratched epoxy coated carbon steel in simulated pore solution containing varying percentage of chloride ions by localized electrochemical impedance spectroscopy, Electrochim. Acta, 199(2016), p. 305.

    Article  CAS  Google Scholar 

  36. C.J. Hu and P.H. Chiu, Wear and corrosion resistance of pure titanium subjected to aluminization and coated with a microarc oxidation ceramic coating, Int. J. Electrochem. Sci., 10(2015), No. 5, p. 4290.

    CAS  Google Scholar 

  37. J.H. Huang, Z.G. Li, and Y.H. Qian, Accelerated corrosion behavior of seawater corrosion resistant Q345C-NHY3 steel in artificial simulated environments, Shanghai Met., 28(2006), No. 4, p. 6.

    CAS  Google Scholar 

  38. K.E. García, A.L. Morales, C.A. Barrero, and J.M. Greneche, New contributions to the understanding of rust layer formation in steels exposed to a total immersion test, Corros. Sci., 48(2006), No. 9, p. 2813.

    Article  Google Scholar 

  39. F.R. Pérez, C.A. Barrero, A.R.H. Walker, K.E. García, and K. Nomura, Effects of chloride concentration, immersion time and steel composition on the spinel phase formation, Mater. Chem. Phys., 117(2009), No. 1, p. 214.

    Article  Google Scholar 

  40. M. Jeannin, D. Calonnec, R. Sabot, and P.H. Refait, Role of a clay sediment deposit on the corrosion of carbon steel in 0.5 mol·L−1 NaCl solutions, Corros. Sci., 52(2010), No. 6, p. 2026.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (Nos. 51474127 and 51671100) and the State Key Laboratory of Metal Material for Marine Equipment and Application-University of Stience and Technology Liaoning co-project, China (Nos. SKLMEA-USTL 2017010 and 201905).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hong-mei Zhang, Yan Li or Zheng-yi Jiang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Hm., Li, Y., Yan, L. et al. Effect of large load on the wear and corrosion behavior of high-strength EH47 hull steel in 3.5wt% NaCl solution with sand. Int J Miner Metall Mater 27, 1525–1535 (2020). https://doi.org/10.1007/s12613-020-1978-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12613-020-1978-3

Keywords

Navigation