Skip to main content
Log in

Effect of interaction of refractories with Ni-based superalloy on inclusions during vacuum induction melting

  • Published:
International Journal of Minerals, Metallurgy and Materials Aims and scope Submit manuscript

Abstract

This study documents laboratory-scale observation of the interactions between the Ni-based superalloy FGH4096 and refractories. Three different crucibles were tested—MgO, Al2O3, and MgO-spinel. We studied the variations in the compositions of the inclusions and the alloy-crucible interface with the reaction time using scanning electron microscopy equipped with energy dispersive X-ray spectroscopy and X-ray diffraction. The results showed that the MgO and MgO-spinel crucibles form MgO-containing inclusions (Al-Mg oxides and Al-Mg-Ti oxides), whereas the inclusions formed when using the Al2O3 crucible are Al2O3 and Al-Ti oxides. We observed a new MgAl2O4 phase at the inner wall of the MgO crucible, with the alloy melted in the MgO crucible exhibiting fewer inclusions. No new phase occurred at the inner wall of the Al2O3 crucible. We discuss the mechanism of interaction between the refractories and the Ni-based superalloy. Physical erosion was found to predominate in the Al2O3 crucible, whereas dissolution and chemical reactions dominated in the MgO crucible. No reaction was observed between three crucibles and the Ti of the melt although the Ti content (3.8wt%) was higher than that of Al (2.1wt%).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Z.C. Peng, G.F. Tian, J. Jiang, M.Z. Li, Y. Chen, J.W. Zou, and F.P.E. Dunne, Mechanistic behaviour and modelling of creep in powder metallurgy FGH96 nickel superalloy, Mater. Sci. Eng. A, 676(2016), p. 441.

    Article  CAS  Google Scholar 

  2. M.J. Zhang, F.G. Li, B. Chen, and S.Y. Wang, Investigation of micro-indentation characteristics of PM nickel-base superalloy FGH96 using dislocation-power theory, Mater. Sci. Eng. A, 535(2012), p. 170.

    Article  CAS  Google Scholar 

  3. D.D. Yang, Y. Shi, G.L. Miao, X.G. Yang, and D.Q. Shi, The study of the relationship between life limiting factor and stress level for FGH96, MATEC Web Conf., 165(2018), p. 22031.

    Article  Google Scholar 

  4. B. Fang, G.F. Tian, Z. Ji, M.Y. Wang, C.C. Jia, and S.W. Yang, Study on the thermal deformation behavior and microstructure of FGH96 heat extrusion alloy during two-pass hot deformation, Int. J. Miner. Metall. Mater., 26(2019), No. 5, p. 657.

    Article  CAS  Google Scholar 

  5. Y.F. Feng, X.M. Zhou, J.W. Zou, and G.F. Tian, Effect of cooling rate during quenching on the microstructure and creep property of nickel-based superalloy FGH96, Int. J. Miner. Metall. Mater., 26(2019), No. 4, p. 493.

    Article  CAS  Google Scholar 

  6. G.L. Miao, X.G. Yang, and D.Q. Shi, Competing fatigue failure behaviors of Ni-based superalloy FGH96 at elevated temperature, Mater. Sci. Eng. A, 668(2016), p. 66.

    Article  CAS  Google Scholar 

  7. J. Jiang, J. Yang, T.T. Zhang, F.P.E. Dunne, and T.B. Britton, On the mechanistic basis of fatigue crack nucleation in Ni superalloy containing inclusions using high resolution electron backscatter diffraction, Acta Mater., 97(2015), p. 367.

    Article  CAS  Google Scholar 

  8. M.H. Manjili and M. Halali, Removal of non-metallic inclusions from nickel base superalloys by electromagnetic levitation melting in a slag, Metall. Mater. Trans. B, 49(2018), No. 1, p. 61.

    Article  CAS  Google Scholar 

  9. J.D. Busch, J. Debarbadillo, and M. Krane, Flux entrapment and titanium nitride defects in electroslag remelting of INCOLOY alloys 800 and 825, Metall. Mater. Trans. A, 44(2013), No. 12, p. 5295.

    Article  CAS  Google Scholar 

  10. X.C. Chen, C.B. Shi, H.J. Guo, F. Wang, H. Ren, and D. Feng, Investigation of oxide inclusions and primary carbonitrides in Inconel 718 superalloy refined through electroslag remelting process, Metall. Mater. Trans. B, 43(2012), No. 6, p. 1596.

    Article  CAS  Google Scholar 

  11. H.E.O. Kellner, A.V. Karasev, O. Sundqvist, A. Memarpour, and P.G. Jönsson, Estimation of non-metallic inclusions in industrial Ni based alloys 825, Steel Res. Int., 88(2017), No. 4, p. 1.

    Article  Google Scholar 

  12. R. Kennedy, R.M.F. Jones, R.M. Davis, M.G. Benz, and W.T. Carter, Superalloys made by conventional vacuum melting and a novel spray forming process, Vacuum, 47(1996), No. 6–8, p. 819.

    Article  CAS  Google Scholar 

  13. A. Choudhury, State of the art of superalloy production for aerospace and other application using VIM-VAR or VIM-ESR, ISIJInt., 32(1992), No. 5, p. 563.

    CAS  Google Scholar 

  14. N. Nayan, Govind, C.N. Saikrishna, K.V. Ramaiah, S.K. Bhaumik, K.S. Nair, and M.C. Mittal, Vacuum induction melting of NiTi shape memory alloys in graphite crucible, Mater. Sci. Eng. A, 465(2007), No. 1–2, p. 44.

    Article  Google Scholar 

  15. Z.H. Zhang, J. Frenzel, K. Neuking, and G. Eggeler, On the reaction between NiTi melts and crucible graphite during vacuum induction melting of NiTi shape memory alloys, Acta Mater., 53(2005), No. 14, p. 3971.

    Article  CAS  Google Scholar 

  16. H.X. Ji, S. Jones, and P.M. Marquis, Characterization of the interaction between molten titanium alloy and Al2O3, J. Mater. Sci., 30(1995), No. 22, p. 5617.

    Article  CAS  Google Scholar 

  17. M. Koyama, S. Arai, S. Suenaga, and M. Nakahashi, Interfacial reactions between titanium film and single crystal a-Al2O3, J. Mater. Sci., 28(1993), No. 3, p. 830.

    Article  CAS  Google Scholar 

  18. A. Misra, Reaction of Ti and Ti-Al alloys with alumina, Metall. Trans. A, 22(1991), No. 3, p. 715.

    Article  Google Scholar 

  19. Q.L. Li, H.R. Zhang, M. Gao, J.P. Li, T.X. Tao, and H. Zhang, Mechanisms of reactive element Y on the purification of K4169 superalloy during vacuum induction melting, Int. J. Miner. Metall. Mater., 25(2018), No. 6, p. 696.

    Article  CAS  Google Scholar 

  20. R.J. Cui, M. Gao, H. Zhang, and S.K. Gong, Interactions between TiAl alloys and yttria refractory material in casting process, J. Mater. Process. Technol., 210(2010), No. 9, p. 1190.

    Article  CAS  Google Scholar 

  21. K.F. Lin and C.C. Lin, Interfacial reactions between Ti-6Al-4V alloy and zirconia mold during casting, J. Mater. Sci., 34(1999), No. 23, p. 5899.

    Article  CAS  Google Scholar 

  22. T. Degawa and T. Ototani, Refining of high purity Ni-base superalloy using calcia refractory, Tetui-tto-Hgamm, 73(1987), No. 14, p. 1691.

    CAS  Google Scholar 

  23. J.P. Niu, X.F. Sun, T. Jin, K.N. Yang, H.R. Guan, and Z.Q. Hu, Investigation into deoxidation during vacuum induction melting refining of nickel base superalloy using CaO crucible, Mater. Sci. Technol., 19(2003), No. 4, p. 435.

    Article  CAS  Google Scholar 

  24. N. Verma, P.C. Pistorius, R.J. Fruehan, M. Potter, M. Lind, and S. Story, Transient inclusion evolution during modification of alumina inclusions by calcium in liquid steel: Part I. Background, experimental techniques and analysis methods, Metall. Mater. Trans. B, 42(2011), No. 4, p. 711.

    Article  CAS  Google Scholar 

  25. C. Wang, N.T. Nuhfer, and S. Sridhar, Transient behavior of inclusion chemistry, shape, and structure in Fe-Al-Ti-O melts: Effect of titanium source and laboratory deoxidation simulation, Metall. Mater. Trans. B, 40(2009), No. 6, p. 1005.

    Article  CAS  Google Scholar 

  26. Y.J. Kwon, J. Choi, and S. Sridhar, The morphology and chemistry evolution of inclusions in Fe-Si-Al-O melts, Metall. Mater. Trans. B, 42(2011), No. 4, p. 814.

    Article  CAS  Google Scholar 

  27. W.L. Wang, L.W. Xue, T.S. Zhang, L.J. Zhou, J.Y. Chen, and Z.H. Pan, Thermodynamic corrosion behavior of Al2O3, ZrO2 hand MgO refractories in contact with high basicity slag, Ceram. Int., 45(2019), No. 16, p. 20664.

    Article  CAS  Google Scholar 

  28. H.Y. Mu, T.S. Zhang, R. Fruehan, and B. Webler, Reduction of CaO and MgO slag components by Al in liquid Fe, Metall. Mater. Trans. B, 49(2018), No. 4, p. 1665.

    Article  CAS  Google Scholar 

  29. Z.Y. Deng and M.Y. Zhu, Evolution mechanism of non-metallic inclusions in Al-killed alloyed steel during secondary refining process, ISIJ Int., 53(2013), No. 3, p. 450.

    Article  CAS  Google Scholar 

  30. M. Jiang, X.H. Wang, and W.J. Wang, Control of non-metallic inclusions by slag-metal reactions for high strength alloying steels, Steel Res. Int., 81(2010), No. 9, p. 759.

    Article  CAS  Google Scholar 

  31. S.J. Luo, Y.H.F. Su, M.J. Lu, and J.C. Kuo, EBSD analysis of magnesium addition on inclusion formation in SS400 structural steel, Mater. Charact., 82(2013), p. 103.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work is financially supported by the Natural Science Foundation of China (No. 51974029), the Natural Science and Technology Major Project (No. 2017-VI-0014-0086), and Fundamental Research Funds for the Central Universities (Nos. FRF-AT-19-013 and FRF-NP-19-003).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lin Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gao, Xy., Zhang, L., Qu, Xh. et al. Effect of interaction of refractories with Ni-based superalloy on inclusions during vacuum induction melting. Int J Miner Metall Mater 27, 1551–1559 (2020). https://doi.org/10.1007/s12613-020-2098-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12613-020-2098-9

Keywords

Navigation