Skip to main content

Advertisement

Log in

Provenance of Neogene deposits of Barreiras Formation in the southeastern Brazilian continental margin

  • Original Paper
  • Published:
International Journal of Earth Sciences Aims and scope Submit manuscript

Abstract

The Barreiras Formation records continental-to-shallow–water marine sequences deposited during the Paleogene–Neogene periods in the Brazilian continental margin. In northern Rio de Janeiro and southern Espírito Santo states, the Barreiras Formation preserve alluvial depositional system. The sediments were derived from a source located in the hinterland of the southeastern Brazilian continental margin, where rocks formed or reworked notably during the Gondwana supercontinent assembly are exposed. Detrital zircon U–Pb ages are mostly late Neoproterozoic, dominantly close to 608 Ma. Source rocks of this age occurred within the Ribeira and Araçuaí belts and were formed during their main magmatic activity. U–Pb zircon age distribution is similar to the southern and central Ribeira belt. Zircon fission-track ages occur in four main groups, between 429 and 358 Ma, 351 and 274 Ma, 270 and 171 Ma, and 167 and 127 Ma. Complex variation in the detrital zircon fission-track ages is related to the continental crust thermal evolution in the source areas. Older ages also occur between 534 and 433 Ma (Cambrian-to-Silurian periods) and are chrono-correlated to post-orogenic processes after the Gondwana supercontinent agglutination. Zircon fission-track ages between 429 and 274 Ma (Silurian to Permian periods) are related to the formation of the Pangea supercontinent, whereas the predominant zircon fission-track age group, between 270 and 171 Ma (Permian to Jurassic periods), is chrono-correlated to both orogeneses in the Gondwana supercontinent west margin and the Pangea supercontinent breakup. Zircon fission-track ages from 167 to 127 Ma are in the same period as the opening of the North and South Atlantic oceans. Data indicate that the thermal evolution of the source region either during the Gondwana supercontinent and South America Platform stages is complex.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

(modified from Oriolo et al. 2017)

Fig. 3

(modified from Plantz, 2017)

Fig. 4

(modified from Vieira et al. 2014; Heilbron et al. 2016)

Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

(modified from Egydio-Silva et al. 2019 and references therein)

Fig. 10

Similar content being viewed by others

References

  • Ab’Saber AN (1962) A Serra do Mar e o litoral de Santos. Notícia Geomorfol 5:70–77

    Google Scholar 

  • Albarède F, Telouk S, Blichert-Toft J, Boyet M, Agranier A, Nelson B (2004) Precise and accurate isotopic measurements using multiple-collector ICPMS. Geochim Cosmochim Acta 68:2725–2744

    Google Scholar 

  • Almeida FFM (1977) O Cráton do São Francisco. Revista Brasileira de Geociências 7:349–364

    Google Scholar 

  • Almeida FFM, Carneiro CDR (1998) Origem e Evolução da Serra do Mar. Rev Bras Geociências 28:135–150

    Google Scholar 

  • Arai M (2006) A grande elevação eustática do Mioceno e sua influência na origem do Grupo Barreiras. Geol USP, Série Científica 6:1–6

    Google Scholar 

  • Bento dos Santos TM, Tassinari CCG, Fonseca PE (2015) Diachronic collision, slab break-off and long-term high thermal flux in the Brasiliano-Pan African orogeny: implications for the geodynamic evolution of the Mantiqueira Province. Precambr Res 260:1–22

    Google Scholar 

  • Bigarella JJ (1975) The Barreiras Group in Northeastern Brazil. Anais Acad Bras Ciências 47:365–393

    Google Scholar 

  • Catuneanu O (2019) Model-independent sequence stratigraphy. Earth Sci Rev 188:312–388

    Google Scholar 

  • Chang HK, Kowsmann RO, Figueredo AMF, Bender AA (1992) Tectonics and stratigraphy of the East Brazil rift system: an overview. Tectonophysics 213:97–138

    Google Scholar 

  • Chemale F Jr, Kawashita K, Dussin IV, Ávila JN, Justino D, Bertotti A (2012) U-Pb zircon in situ dating with LA-MC-ICP-MS using a mixed detector configuration. Anais da Academia Brasileira de Ciências 84:275–295

    Google Scholar 

  • Clark PU, Dyke AS, Shakun JD, Carlson AE, Clark J, Wohlfarth B, Mitrovica JX, Hostetler SW, McCabe AM (2009) The last glacial maximum. Science 325:710–714

    Google Scholar 

  • Cobbold PR, Meisling KE, Mount VS (2001) Reactivation of an obliquely rifted margin, Campos and Santos basins, southeastern Brazil. Am Assoc Petrol Geol Bull 85:1903–1924. https://doi.org/10.1306/8626D0B3-173B-11D7-8645000102C1865D

    Article  Google Scholar 

  • Cogné N, Gallagher K, Cobbold PR (2011) Post-rift reactivation of the onshore margin of southeastern Brazil: evidence from apatite (U–Th)/He and fission-track data. Earth Planet Sci Lett 309:118–130

    Google Scholar 

  • Cohen KM, Finney SC, Gibbard PL, Fan J-X (2013) (updated). The ICS International Chronostratigraphic Chart. Episodes 36: 199–204

  • Cruz O (1990) Contribuição Geomorfológica ao Estudo de Escarpas da Serra do Mar. Rev Inst Geol 8:9–20

    Google Scholar 

  • Dias ANC (2012) Análise integrada pelo método U–Pb e Traços de Fissão em zircão: caracterização, datação e interpretação. PhD Thesis, UFRGS, Porto Alegre

  • Dias ANC, Chemale F Jr, Soares CJ, Guedes S (2017) A new approach for electron microprobe zircon fission track thermochronology. Chem Geol 459:129–136

    Google Scholar 

  • Dias ANC, Chemale Jr. F, Hackspacher PC, Soares CJ, O-Aristizabal CI, Tello CA, (2017b) Fission Track and U–Pb double dating of detrital zircon applied to the intracratonic mesozoic Bauru Basin, Brazil. Geol J 1–14

  • Dias ANC, Moura CAV, Milhomem Neto JM, Chemale F Jr, Girelli TJ, Masuyama KM (2017) Geochronology and thermochronology of the gneisses of the Brasiliano/Pan-African Araguaia Belt: records of exhumation of West Gondwana and Pangea break up. J S Am Earth Sci 80:174–191

    Google Scholar 

  • Egydio-Silva M, Vauchez A, Fossen H, Cavalcante GCG, Xavier BC (2018) Connecting the Araçuaí and Ribeira belts (SE-Brazil): progressive transition from contractional to transpressive strain regime during the Brasiliano orogeny. J S Am Earth Sci 86:127–139

    Google Scholar 

  • Fonseca AC, Piffer GV, Nachtergaele S, Van Ranst G, De Grave J, Novo TA (2020) Devonian to Permian post-orogenic denudation of the Brasília Belt of West Gondwana: insights from apatite fission track thermochronology. J Geodyn. https://doi.org/10.1016/j.jog.2020.101733

    Article  Google Scholar 

  • Garver JI (2003) Etching zircon age standards for fission-track analysis. Radiat Meas 37:47–53

    Google Scholar 

  • Garver JI, Kamp PJ (2002) Integration of zircon color and zircon fission track zonation patterns in orogenic belts: application of the Southern Alps, New Zealand. Tectonophysics 349:203–219

    Google Scholar 

  • Green PF, Japsen P, Chalmers JA, Bonow JM, Duddy IR (2018) Post-breakup burial and exhumation of passive continental margins: seven propositions to inform geodynamic models. Gondwana Res 53:58–81

    Google Scholar 

  • Hackspacher PC, Godoy DF, Ribeiro LFB, Hadler Neto JC, Franco AOB (2007) Modelagem térmica e geomorfologia da borda sul do Cráton do São Francisco: termocronologia por traços de fissão em apatita. Rev Bras Geol 37:76–86

    Google Scholar 

  • Hartwig ME, Riccomini C (2010) Análise Morfotectônica da Região da Serra dos Órgãos, Sudeste do Brasil. Rev Bras Geomorfol 11:11–20

    Google Scholar 

  • Heilbron M, Machado N (2003) Timing of terrane accretion in the Neoproterozoic-Eopaleozoic Ribeira orogen (SE Brazil). Precambr Res 125:87–112

    Google Scholar 

  • Heilbron M, Eirado LG, Almeida J (2016) Mapa geológico e de recursos minerais do estado do Rio de Janeiro, 1:400.000, CPRM: Brasília

  • Hueck M, Dunkl I, Oriolo S, Wemmer K, Basei MAS, Seigesmund S (2019) Comparing contiguous high- and low-elevation continental margins: new (U-Th)/He constraints from South Brazil and and integration of the thermochonological record of the southeastern passive margin of South America. Tectonophysics. https://doi.org/10.1016/j.tecto.2019.228222

    Article  Google Scholar 

  • Jackson SE, Pearson NJ, Griffin WL, Belousova EA (2004) The application of laser ablation-inductively coupled plasma-mass spectrometry to in situ U-Pb zircon geochronology. Chem Geol 211:47–69

    Google Scholar 

  • Japsen P, Chalmers JA, Green PF, Bonow JM (2012) Elevated, passive continental margins: Not rift shoulders, but expressions of episodic, post-rift burial and exhumation. Global Planet Change 90–91:73–86

    Google Scholar 

  • Jelinek AR, Chemale F Jr, van der Beek PA, Guadagnin F, Cupertino JA, Viana A (2014) Denudation history and landscape evolution of the northern East-Brazilian continental margin from apatite fission-track thermochronology. J S Am Earth Sci 54:158–181

    Google Scholar 

  • Kosler J, Gondwanan H, Sylvester P, Tubrett M, Pedersen RB (2002) U–Pb dating of detrital zircons for sediment provenance studies—a comparison of laser ablation ICPMS and SIMS technique. Chem Geol 182:605–618

    Google Scholar 

  • Krob FC, Glasmacher UA, Karl M, Perner M, Hackspacher PC, Stockli DF (2019) Multi-chronometer thermochronoligcal modelling of the Late Neoproterozoic to recent t-T-evolution of the SE coastal region of Brazil. J S Am Earth Sci 92:77–94

    Google Scholar 

  • Lanphere MA, Baadsgaard H (1997) The Fish Canyon Tuff: a standard for geochronology. EOS Trans Am Geophys Union 78:5326

    Google Scholar 

  • Lima CCU (2010) Evidências de ação tectônica nos sedimentos da Formação Barreiras presentes no litoral de Sergipe e ao norte da Bahia. Revista de Geografia 1

  • Lima CCU, Vilas Boas GS, Bezerra FHR (2006) Faciologia e análise tectônica preliminar da Formação Barreiras no litoral sul do estado da Bahia. Geol USP, Série Científica 6:71–80

    Google Scholar 

  • Lloyd SP (1982) Least squares quantization in PCM. IEEE Trans Inf Theory 28:129–137

    Google Scholar 

  • Ludwig KR (2008) Manual for Isoplot 3.7. Berkeley Geochronology Center, Special Publication 4: 77

  • Machado N, Valladares C, Heilbron M, Valeriano C (1996) U-Pb geochronology of the central Ribeira belt (Brazil) and implications for the evolution of the Brazilian Orogeny. Precambr Res 79:347–361

    Google Scholar 

  • Maizatto JR, Lana CC, Ribeiro AWS, Ferreira E (2009) Evidências de terras altas no Campaniano da Bacia do Espírito Santo. Boletim Geociências Petrobrás 17:31–43

    Google Scholar 

  • Martin L, Suguio K, Flexor JM (1993) As flutuações de nível do mar durante o Quarternário Superior e a evolução geológica de “deltas” brasileiros. Boletim de Geociências—USP. Publicação Especial 15:1–186

    Google Scholar 

  • Martins LR, Coutinho PN (1981) The Brazilian continental margin. Earth Sci Rev 17:87–107

    Google Scholar 

  • Meira VT, Garcia-Casco A, Juliani C, Almeida RP, Schorscher JHD (2015) The role of intracontinental deformation in supercontinent assembly: insights from the Ribeira Belt, Southeastern Brazil (Neoproterozoic West Gondwana). Terra Nova 27:206–217

    Google Scholar 

  • Mello CL (2016) Formação Barreiras. In: Geologia e Recursos Minerais do Estado do Rio de Janeiro, Serviço Geológico do Brasil, cap. 14: 131–135

  • Miall AD (2006) The geology of fluvial deposits. Springer, Berlin

    Google Scholar 

  • Miall A (2010) Alluvial Deposits. In: James NP, Dalrymple RW (eds). Facies Models 4. Canadian Society of Petroleum Geologists

  • Milani EJ, Thomaz Filho A (2000) Sedimentary basins of South America. In: Cordani UG, Milani EJ, Thomaz Filho A, Campos DA (eds.), Tectonic evolution of South America, Rio de Janeiro, 389–449

  • Milhomem Neto JM, Lafon J-M (2019) Zircon U–Pb and Lu–Hf isotope constraints on Archean crustal evolution in Southeastern Guyana Shield. Geosci Front 10:1477–1506

    Google Scholar 

  • Noce CM, Pedrosa-Soares AC, da Silva LC, Armstrong R, Piuzana D (2007) Evolution of polycyclic basement complexes in the Araçuaí Orogen, based on UPb SHRIMP data: implications for Brazil-Africa links in Paleoproterozoic time. Precambrian Res 159:60–78. https://doi.org/10.1016/j.precamres.2007.06.001

    Article  Google Scholar 

  • Oliveira CHE, Jelinek AR, Chemale F Jr, Cupertino JA (2016) Thermotectonic history of the southeastern Brazilian margin: evidence from apatite fission track data of the offshore Santos Basin and continental basement. Tectonophysics 685:21–34

    Google Scholar 

  • Oriolo S, Oyhantçabal P, Wemmer K, Siegesmund S (2017) Contemporaneous assembly of Western Gondwana and final Rodinia breakup: implications for the supercontinent cycle. Geosci Front 8:1431–1445

    Google Scholar 

  • Pedrosa-Soares AC, Noce CM, Wiedemann C, Pinto CP (2001) The Aracuaí-West-Congo Orogen in Brazil: Na overview of a confined orogen formed during Gondwanaland assembly. Precambrian Res 110:307–323

    Google Scholar 

  • Pedrosa-Soares AC, Alkmim FF, Tack L, Noce CM, Babinski M, Silva LC, Martins-Neto MA (2008) Similarities and differences between the Brazilian and African counterparts of the Neoproterozoic Araçuaí-West Congo or ogen. In: Pankhurst RJ, Trouw RAJ, Brito Neves BB, De Wit MJ (eds) West Gondwana: pre-Cenozoic correlations across the South Atlantic Region. Geological Society. Special Publications, London, pp 153–172

    Google Scholar 

  • Pedrosa-Soares AC, De Campos CP, Noce C, Silva LC, Novo T, Roncato J, Medeiros S, Castaneda C, Queiroga G, Dantas E, Dussin I, Alkmim F (2011) Late Neoproterozoic-Cambrian granitic magmatism in the Aracuai orogen (Brazil), the Eastern Brazilian Pegmatite Province and related mineral resources. Geol Soc London, Spec. Publ

  • Petitgirard S, Vauchez A, Egydio-Silva M, Bruguier O, Camps P, Monié P, Babinski M, Mondou M (2009) Conflicting structural and geochronological data from the Ibituruna quartz-syenite (SE Brazil): effect of protracted orogeny and slow cooling rate? Tectonophysics 477:174–196

    Google Scholar 

  • Plantz JB (2017) Interpretação paleoambiental e modelo evolutivo da porção central do Complexo Deltáico do Rio Paraíba do Sul (RJ). Dissertação de Mestrado, UFRJ, Rio de Janeiro

  • Potter PE (1997) The Mesozoic and Cenozoic paleodrainage of South America a natural history. J S Am Earth Sci 10:331–344

    Google Scholar 

  • Ribeiro AC, Riccomini C, Dexheimer Leite JA (2018) Origin of the largest South American transcontinental water divide. Sci Rep. https://doi.org/10.1038/s41598-018-35554-6

    Article  Google Scholar 

  • Rossetti DF, Góes AM (2009) Marine influence in the Barreiras Formation, state of Alagoas, northeastern Brazil. Anais Acad Bras Ciências 81:741–755

    Google Scholar 

  • Rossetti DF, Góes AM, Valeriano MM, Miranda MCC (2008) Quaternary tectonics in a passive margin: Marajó island, northern Brazil. J Quat Sci 23:121–135

    Google Scholar 

  • Rossetti DF, Bezerra FHR, Góes AM, Brito Neves BB (2011) Sediment deformation in Miocene and post-Miocene strata, northeastern Brazil: evidence from paleoseismicity in a passive margin. Sed Geol 235:172–187

    Google Scholar 

  • Schmitt RS, Trouw RAJ, Van Schmus WR, Pimentel MM (2004) Late amalgamation in the central part of West Gondwana: new geochronological data and the characterization of a Cambrian collisional orogeny in the Ribeira Belt (SE Brazil). Precambr Res 133:29–61

    Google Scholar 

  • Schmitt RS, Frimmel HE, Fairchild TR (2008) Neoproterozoic-Early Paleozoic events in Southwest Gondwana: introduction. Gondwana Res 13:435–436

    Google Scholar 

  • Scotese CR (2014) Plate Tectonics and Paleogeography, present-day—540 million years ago. PALEOMAP Project, Evanston

    Google Scholar 

  • Soares CJ, Guedes S, Hadler JC, Mertz-Kraus R, Zack T, Iunes PJ (2014) Novel calibration for LA-ICP-MS-based fission-track thermochronology. Phys Chem Mineral 41:65–73

    Google Scholar 

  • Stampfli GM, Hochard C, Vérard C, Wilhem C, vonRaumer J (2013) The formation of Pangea. Tectonophysics 593:1–19

    Google Scholar 

  • Suguio K, Nogueira ACR (1999) Revisão crítica dos conhecimentos geológicos sobre a Formação (ou Grupo?) Barreiras do Neógeno e o seu possível significado como testemunho de alguns eventos geológicos mundiais. Geociências 18:439–460

    Google Scholar 

  • Tagami T, Ito H, Nishimura S (1990) Thermal annealing characteristics of spontaneus fission tracks in zircon. Chem Geol 80:159–169

    Google Scholar 

  • Tagami T, Farley KA, Stockli DF (2003) (U-Th)/He geochronology of single zircon grains of known Tertiary eruption age. Earth Planetary Sci Letters 207:57–67

    Google Scholar 

  • Trompette R, Uhlein A, Egydio-Silva M, Karmann I (1992) The Brasiliano São Francisco craton revisited (central Brazil). J S Am Earth Sci 6:49–57

    Google Scholar 

  • Van Ranst G, Pedrosa-Soares AC, Novo T, Vermeesch P, De Grave J (2020) New insights from low-temperature thermochronology into the tectonic and geomorphologic evolution of the southeastern Brazilian highlands and passive margin. Geosci Front. https://doi.org/10.1016/j.gsf.2019.05.011

    Article  Google Scholar 

  • Vauchez A, Hollanda MHBM, Monié P, Mondou M, Egydio-Silva M (2019) Slow cooling and crystallization of the roots of the Neoproterozoic Araçuaí hot orogen (SE Brazil): Implications for rheology, strain distribution, and deformation analysis. Tectonophysics 766:500–518

    Google Scholar 

  • Vieira BC, Gramani MF (2015) Serra do Mar: The Most “Tormented” Relief in Brazil. In: Vieira et al. (eds.), Landscapes and Landforms of Brazil, Springer, https://doi.org/10.1007/978-94-017-8023-0_26

  • Vieira VS, Silva MA, Correa TR, Lopes NHB (2014) Mapa Geológico do Estado do Espírito Santo, 1:400.000, CPRM: Brasília

  • Yamada R, Tagami T, Nishimura S, Ito H (1995) Annealing kinetics of fission tracks in zircon: an experimental-study. Chem Geol 122:249–258

    Google Scholar 

  • Yamada R, Tagami T, Nishimura S (1995) Confined fissiontrack length measurement of zircon: assessment of factors affecting the paleotemperature estimate. Chem Geol 119:293–306

    Google Scholar 

Download references

Acknowledgements

The authors are grateful to the FAPESP (São Paulo Research Foundation, grant number 2017/12208-6 and 2014/13792-5), which financially supported this work. The anonymous reviewer and the editor are acknowledged for constructive comments and suggestions, which improved this manuscript substantially.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. N. C. Dias.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dias, A.N.C., Guadagnin, F., Rangel, C.V.G.T. et al. Provenance of Neogene deposits of Barreiras Formation in the southeastern Brazilian continental margin. Int J Earth Sci (Geol Rundsch) 110, 233–249 (2021). https://doi.org/10.1007/s00531-020-01949-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00531-020-01949-y

Keywords

Navigation