Skip to main content
Log in

Influence of Na2O addition on the alkali borochromate glasses: structure and ligand field

  • Original Scientific Research
  • Published:
Indian Journal of Physics Aims and scope Submit manuscript

Abstract

Trivalent chromium is a very common ion used for coloring in the industry of glass. As glasses are melted under high oxidizing circumstances, hexavalent chromium Cr(VI) can be fixed and found in certain advertising applications of UV-protection receptacles. Melt quenching technique is employed to prepare oxide glasses with a general formula xNa2O–(30 − x) Li2O–10K2O–10ZnO–49.7B2O3–0.3Cr2O3 (where x = 0, 5, 10 and 15 mol%). The amorphous nature of the samples is confirmed using X-ray diffraction. The optical absorption spectra have been recorded, and the resulting data were used for the ligand field theory analysis, from which the crystal-field energy (10Dq), Racah parameters (B and C) and nephelauxetic function (h) were evaluated. The variations in the optical bandgap and the band tail with Na2O content have been discussed in relation to the glass structure. FTIR of these glasses revealed that the borate network is affected by the replacement of Na2O by Li2O content. It showed also reduction in N4 with increasing Na2O. This result indicates the increase of non-bridging oxygens (NBOs) which in turn reduces the rigidity of the glass matrix and opens up the structure. The density and the molar volume (VM) measurements were also employed to investigate the structure. These measurements show a linear increase as Na2O content increases. This can be attributed to the differences in the ionic radii of sodium and lithium ions, being larger for sodium. UV–Visible optical absorption spectra show three characteristics bands around ~ 588, 435 and 360 nm which are assigned to the transitions 4A2g → 4T2g, 4A2g → 4T1g and 4A2g → 2A1g, respectively. Racah parameters (B and C) show an opposite behavior. The obtained ratio (10Dq/B) reveals a strong ligand field around chromium ions. Also, the nephelauxetic parameter of the ligand shows the same 10Dq behavior. The increase of chromium ions in the trivalent state shows that it acts as modifiers, yielding the higher concentration of NBOs in the glass matrix and confirming the FTIR and optical results. Electron spin resonance spectroscopy was measured and studied to confirm the existence of Cr3+ and Cr6+.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. G Krishna Kumari et al Mater. Res. Bull. 47 2646 (2012)

  2. Subhashini, H D Shashikala and N K Udayashankar J. Alloys Compd. 658 996 (2016)

  3. A Edukondalu et al J. Non Cryst. Solids 358 2581 (2012)

  4. G P Singh, S Kaur, P Kaur, S Kumar and D P Singh Physica B 406 1890 (2011)

  5. P Meejitpaisan, J Kaewkhao, P Limsuwan and C Kedkaew Procedia Eng. 32 787 (2012)

    Article  Google Scholar 

  6. R Vijay, P Ramesh Babu, V Ravi Kumar, M Piasecki, D Krishna Rao and N Veeraiah Mater. Sci. Semicond. Process. 35 96 (2015)

    Article  Google Scholar 

  7. B Lakshmana Rao, Y N Ch Ravi Babu and S V G V A Prasad J. Non Cryst. Solids 382 99 (2013)

  8. M A Hassan J. Alloys Compd. 574 391 (2013)

  9. F Ahmad J. Alloys Compd. 586 605 (2014)

  10. H Wen and P A Tanner J. Alloys Compd. 625 328 (2015)

  11. A R Molla et al J. Alloys Compd. 583 498 (2014)

  12. F S De Vicente, F A Santos, B S Simoes, S T Dias and M Siu Li Opt. Mater. 38 119 (2014)

    Google Scholar 

  13. J A Duffy J. Non Cryst. Solids 297 275 (2002)

  14. L C Allen J. Am. Chem. Soc. 111 9003 (1989)

  15. A Terczyñska-Madej, K Cholewa-Kowalska and M Laczka Opt. Mater. 33 1984 (2011)

  16. J-J He, S-Y Wu, L-J Zhang, Y-Q Xu and C-C Ding J. Non Cryst. Solids 437 58 (2016)

    Article  ADS  Google Scholar 

  17. Yusub, Ch Rajyasree, A Ramesh Babu, P M Vinaya Teja and D Krishna Rao J. Non Cryst. Solids 364 62 (2013)

  18. M Farouk, A Samir, F Metawe and M Elokr J. Non Cryst. Solids 371 14 (2013)

    Article  ADS  Google Scholar 

  19. Y B Saddeek, E R Shaaban, E Moustafa and H M Moustafa Phys. B 403 2399 (2008)

  20. R D Shannon Acta. Cryst. A 32 751 (1976)

  21. B Sailaja, R Joyce Stella, G Thirumala Rao, B Jaya Raja, V Pushpa Manjari and R V S S N Ravikumar J. Mol. Struct. 1096 129 (2015)

  22. R Ciceo-Lucacel and I Ardelean J. Non Cryst. Solids 353 2020 (2007)

  23. G Vijaya Prakash, D Narayana Rao and A K Bhatnagar Solid State Commun. 119 39 (2001)

  24. A Samir, M A Hassan, A Abokhadra, L I Soliman and M Elokr Opt. Quant. Electron. 51 123 (2019)

  25. M Farouk, A Samir and M El Okr, Phys. B 530 43 (2018)

    Article  ADS  Google Scholar 

  26. M Farouk, F Ahmad and A Samir Opt. Quant. Electron. 51 292 (2019)

  27. G Murali Krishna, B Anila Kumari, M Srinivasa Reddy and N Veeraiah J. Solid State Chem. 180 2747 (2007)

  28. R V S S N Ravikumar, J Yamauchi, A V Chandrasekhar, Y P Reddy and P Sambasiva Rao J. Mol. Struct. 740 169 (2005)

    Article  ADS  Google Scholar 

  29. M A Hassan, M Farouk, A H Abdullah, I Kashef and M M ElOkr J. Alloys Compd. 539 233 (2012)

    Article  Google Scholar 

  30. Cz Koepke, K Wisniewski and M Grinberg J. Alloys Compd. 341 19 (2002)

    Article  Google Scholar 

  31. Cz Koepke, K Wi´sniewski, M Grinberg and F Rozpłoch J. Phys. Condens. Matter 14 11553 (2002)

    ADS  Google Scholar 

  32. S Morimoto, S Khonthon and Y Ohishi J. Non Cryst. Solids 354 3343 (2008)

    Article  ADS  Google Scholar 

  33. W A Pisarski, J Pisarska, G Dominiak-Dzik and W Ryba-Romanowski J. Alloys Compd. 484 45 (2009)

    Article  Google Scholar 

  34. G Calas, O Majerus, L Galoisy and L Cormier Chem. Geol. 229 218 (2006)

    Google Scholar 

  35. M R Reddy, M S Reddy and N Veeraiah Indian J. Pure Appl. Phys. 44 446 (2006)

    Google Scholar 

  36. A B P Lever, Inorganic Electronic Spectroscopy, 2nd Edition (Amsterdam: Elsevier Science Publisher) (1986)

  37. G Naga Raju, N Veeraiah, G Nagarjuna and P V V Satyanarayana Phys. B 373 297 (2006)

  38. G Little Flower, M Srinivasa Reddy, G Sahaya Baskaran and N. Veeraiah Opt. Mater. 30 357 (2007)

  39. S Vijay, G Sivaramaiah, J L Rao and Kim Mater. Res. Bull. 60 397 (2014)

    Article  Google Scholar 

  40. M A Hassan, F M Ebrahim, M G Moustafa, Z M Abd El-Fattah and M M El-Okr J. Non Cryst. Solids 515 157 (2014)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Samir.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Samir, A. Influence of Na2O addition on the alkali borochromate glasses: structure and ligand field. Indian J Phys 95, 2169–2175 (2021). https://doi.org/10.1007/s12648-020-01842-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12648-020-01842-z

Keywords

Navigation