Skip to main content
Log in

The immune system of jawless vertebrates: insights into the prototype of the adaptive immune system

  • Review
  • Published:
Immunogenetics Aims and scope Submit manuscript

Abstract

Jawless vertebrates diverged from an ancestor of jawed vertebrates approximately 550 million years ago. They mount adaptive immune responses to repetitive antigenic challenges, despite lacking major histocompatibility complex molecules, immunoglobulins, T cell receptors, and recombination-activating genes. Instead of B cell and T cell receptors, agnathan lymphocytes express unique antigen receptors named variable lymphocyte receptors (VLRs), which generate diversity through a gene conversion-like mechanism. Although gnathostome antigen receptors and VLRs are structurally unrelated, jawed and jawless vertebrates share essential features of lymphocyte-based adaptive immunity, including the expression of a single type of receptor on each lymphocyte, clonal expansion of antigen-stimulated lymphocytes, and the dichotomy of cellular and humoral immunity, indicating that the backbone of the adaptive immune system was established in a common ancestor of all vertebrates. Furthermore, recent evidence indicates that, unlike previously thought, agnathans have a unique classical pathway of complement activation where VLRB molecules act as antibodies instead of immunoglobulins. It seems likely that the last common ancestor of all vertebrates had an adaptive immune system resembling that of jawless vertebrates, suggesting that, as opposed to jawed vertebrates, agnathans have retained the prototype of vertebrate adaptive immunity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Alder MN, Rogozin IB, Iyer LM, Glazko GV, Cooper MD, Pancer Z (2005) Diversity and function of adaptive immune receptors in a jawless vertebrate. Science 310:1970–1973

    Article  CAS  PubMed  Google Scholar 

  • Alder MN, Herrin BR, Sadlonova A, Stockard CR, Grizzle WE, Gartland LA, Gartland GL, Boydston JA, Turnbough CL Jr, Cooper MD (2008) Antibody responses of variable lymphocyte receptors in the lamprey. Nat Immunol 9:319–327

    Article  CAS  PubMed  Google Scholar 

  • Bajoghli B, Aghaallaei N, Hess I, Rode I, Netuschil N, Tay BH, Venkatesh B, Yu JK, Kaltenbach SL, Holland ND, Diekhoff D, Happe C, Schorpp M, Boehm T (2009) Evolution of genetic networks underlying the emergence of thymopoiesis in vertebrates. Cell 138:186–197

    Article  CAS  PubMed  Google Scholar 

  • Bajoghli B, Guo P, Aghaallaei N, Hirano M, Strohmeier C, McCurley N, Bockman DE, Schorpp M, Cooper MD, Boehm T (2011) A thymus candidate in lampreys. Nature 470:90–94

    Article  CAS  PubMed  Google Scholar 

  • Boehm T (2011) Design principles of adaptive immune systems. Nat Rev Immunol 11:307–317

    Article  CAS  PubMed  Google Scholar 

  • Boehm T, McCurley N, Sutoh Y, Schorpp M, Kasahara M, Cooper MD (2012) VLR-based adaptive immunity. Annu Rev Immunol 30:203–220

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Boehm T, Hirano M, Holland SJ, Das S, Schorpp M, Cooper MD (2018) Evolution of alternative adaptive immune systems in vertebrates. Annu Rev Immunol 36:19–42

    Article  CAS  PubMed  Google Scholar 

  • Carico Z, Krangel MS (2015) Chromatin dynamics and the development of the TCRα and TCRδ repertoires. Adv Immunol 128:307–361

    Article  CAS  PubMed  Google Scholar 

  • Collins BC, Gunn RJ, McKitrick TR, Cummings RD, Cooper MD, Herrin BR, Wilson IA (2017) Structural insights into VLR fine specificity for blood group carbohydrates. Structure 25:1667–1678

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cooper MD, Alder MN (2006) The evolution of adaptive immune systems. Cell 124:815–822

    Article  CAS  PubMed  Google Scholar 

  • Cooper MD, Peterson RD, Good RA (1965) Delineation of the thymic and bursal lymphoid systems in the chicken. Nature 205:143–146

    Article  CAS  PubMed  Google Scholar 

  • Das S, Hirano M, Aghaallaei N, Bajoghli B, Boehm T, Cooper MD (2013) Organization of lamprey variable lymphocyte receptor C locus and repertoire development. Proc Natl Acad Sci U S A 110:6043–6048

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Das S, Sutoh Y, Hirano M, Han Q, Li J, Cooper MD, Herrin BR (2016) Characterization of lamprey BAFF-like gene: evolutionary implications. J Immunol 197:2695–2703

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Das S, Sutoh Y, Cancro MP, Rast JP, Han Q, Bommakanti G, Cooper MD, Hirano M (2019) Ancient BCMA-like genes herald B cell regulation in lampreys. J Immunol 203:2909–2916

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Deng L, Velikovsky CA, Xu G, Iyer LM, Tasumi S, Kerzic MC, Flajnik MF, Aravind L, Pancer Z, Mariuzza RA (2010) A structural basis for antigen recognition by the T cell-like lymphocytes of sea lamprey. Proc Natl Acad Sci U S A 107:13408–13413

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Deng L, Luo M, Velikovsky A, Mariuzza RA (2013) Structural insights into the evolution of the adaptive immune system. Annu Rev Biophys 42:191–215

    Article  CAS  PubMed  Google Scholar 

  • Finstad J, Good RA (1964) The evolution of the immune response. III. Immunologic responses in the lamprey. J Exp Med 120:1151–1168

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Flajnik MF (2018) A cold-blooded view of adaptive immunity. Nat Rev Immunol 18:438–453

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Flajnik MF, Kasahara M (2010) Origin and evolution of the adaptive immune system: genetic events and selective pressures. Nat Rev Genet 11:47–59

    Article  CAS  PubMed  Google Scholar 

  • Fricke R, Eschmeyer WN, van der Laan R (2020) Eschmeyer’s catalog of fishes | California Academy of Sciences. https://www.calacademy.org/scientists/projects/eschmeyers-catalog-of-fishes

  • Fujii T (1981) Antibody-enhanced phagocytosis of lamprey polymorphonuclear leucocytes against sheep erythrocytes. Cell Tissue Res 219:41–51

    Article  CAS  PubMed  Google Scholar 

  • Fujii T, Nakagawa H, Murakawa S (1979) Immunity in lamprey. I. Production of haemolytic and haemagglutinating antibody to sheep red blood cells in Japanese lampreys. Dev Comp Immunol 3:441–451

    Article  CAS  PubMed  Google Scholar 

  • Fujii T, Nakamura T, Sekizawa A, Tomonaga S (1992) Isolation and characterization of a protein from hagfish serum that is homologous to the third component of the mammalian complement system. J Immunol 148:117–123

    CAS  PubMed  Google Scholar 

  • Fujita T (2002) Evolution of the lectin-complement pathway and its role in innate immunity. Nat Rev Immunol 2:346–353

    Article  CAS  PubMed  Google Scholar 

  • Gess RW, Coates MI, Rubidge BS (2006) A lamprey from the Devonian period of South Africa. Nature 443:981–984

    Article  CAS  PubMed  Google Scholar 

  • Guo P, Hirano M, Herrin BR, Li J, Yu C, Sadlonova A, Cooper MD (2009) Dual nature of the adaptive immune system in lampreys. Nature 459:796–802

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Han BW, Herrin BR, Cooper MD, Wilson IA (2008) Antigen recognition by variable lymphocyte receptors. Science 321:1834–1837

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Han Q, Das S, Hirano M, Holland SJ, McCurley N, Guo P, Rosenberg CS, Boehm T, Cooper MD (2015) Characterization of lamprey IL-17 family members and their receptors. J Immunol 195:5440–5451

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Haruta C, Suzuki T, Kasahara M (2006) Variable domains in hagfish: NICIR is a polymorphic multigene family expressed preferentially in leukocytes and is related to lamprey TCR-like. Immunogenetics 58:216–225

    Article  CAS  PubMed  Google Scholar 

  • Herrin BR, Alder MN, Roux KH, Sina C, Ehrhardt GR, Boydston JA, Turnbough CL Jr, Cooper MD (2008) Structure and specificity of lamprey monoclonal antibodies. Proc Natl Acad Sci U S A 105:2040–2045

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hirano M, Guo P, McCurley N, Schorpp M, Das S, Boehm T, Cooper MD (2013) Evolutionary implications of a third lymphocyte lineage in lampreys. Nature 501:435–438

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Holland SJ, Gao M, Hirano M, Iyer LM, Luo M, Schorpp M, Cooper MD, Aravind L, Mariuzza RA, Boehm T (2014) Selection of the lamprey VLRC antigen receptor repertoire. Proc Natl Acad Sci U S A 111:14834–14839

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Holland SJ, Berghuis LM, King JJ, Iyer LM, Sikora K, Fifield H, Peter S, Quinlan EM, Sugahara F, Shingate P, Trancoso I, Iwanami N, Temereva E, Strohmeier C, Kuratani S, Venkatesh B, Evanno G, Aravind L, Schorpp M, Larijani M, Boehm T (2018) Expansions, diversification, and interindividual copy number variations of AID/APOBEC family cytidine deaminase genes in lampreys. Proc Natl Acad Sci U S A 115:E3211–E3220

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Honjo T, Muramatsu M, Fagarasan S (2004) AID: how does it aid antibody diversity? Immunity 20:659–668

    Article  CAS  PubMed  Google Scholar 

  • Janvier P (2015) Facts and fancies about early fossil chordates and vertebrates. Nature 520:483–489

    Article  CAS  PubMed  Google Scholar 

  • Kanda R, Sutoh Y, Kasamatsu J, Maenaka K, Kasahara M, Ose T (2014) Crystal structure of the lamprey variable lymphocyte receptor C reveals an unusual feature in its N-terminal capping module. PLoS One 9:e85875

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kasahara M (2015) Variable lymphocyte receptors: a current overview. In: Hsu E, Du Pasquier L (eds) Pathogen-host interactions: antigenic variation v. somatic adaptations. Springer Verlag, pp 175–192

  • Kasahara M, Sutoh Y (2014) Two forms of adaptive immunity in vertebrates: similarities and differences. Adv Immunol 122:59–90

    Article  CAS  PubMed  Google Scholar 

  • Kasamatsu J (2013) Evolution of innate and adaptive immune systems in jawless vertebrates. Microbiol Immunol 57:1–12

    Article  CAS  PubMed  Google Scholar 

  • Kasamatsu J, Suzuki T, Ishijima J, Matsuda Y, Kasahara M (2007) Two variable lymphocyte receptor genes of the inshore hagfish are located far apart on the same chromosome. Immunogenetics 59:329–331

    Article  CAS  PubMed  Google Scholar 

  • Kasamatsu J, Oshiumi H, Matsumoto M, Kasahara M, Seya T (2010a) Phylogenetic and expression analysis of lamprey toll-like receptors. Dev Comp Immunol 34:855–865

    Article  CAS  PubMed  Google Scholar 

  • Kasamatsu J, Sutoh Y, Fugo K, Otsuka N, Iwabuchi K, Kasahara M (2010b) Identification of a third variable lymphocyte receptor in the lamprey. Proc Natl Acad Sci U S A 107:14304–14308

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kato L, Stanlie A, Begum NA, Kobayashi M, Aida M, Honjo T (2012) An evolutionary view of the mechanism for immune and genome diversity. J Immunol 188:3559–3566

    Article  CAS  PubMed  Google Scholar 

  • Kim HM, Oh SC, Lim KJ, Kasamatsu J, Heo JY, Park BS, Lee H, Yoo OJ, Kasahara M, Lee JO (2007) Structural diversity of the hagfish variable lymphocyte receptors. J Biol Chem 282:6726–6732

    Article  CAS  PubMed  Google Scholar 

  • Kimbrell DA, Beutler B (2001) The evolution and genetics of innate immunity. Nat Rev Genet 2:256–267

    Article  CAS  PubMed  Google Scholar 

  • Kirchdoerfer RN, Herrin BR, Han BW, Turnbough CL Jr, Cooper MD, Wilson IA (2012) Variable lymphocyte receptor recognition of the immunodominant glycoprotein of Bacillus anthracis spores. Structure 20:479–486

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kishishita N, Nagawa F (2014) Evolution of adaptive immunity: implications of a third lymphocyte lineage in lampreys. BioEssays 36:244–250

    Article  CAS  PubMed  Google Scholar 

  • Kishishita N, Matsuno T, Takahashi Y, Takaba H, Nishizumi H, Nagawa F (2010) Regulation of antigen-receptor gene assembly in hagfish. EMBO Rep 11:126–132

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Korn T, Bettelli E, Oukka M, Kuchroo VK (2009) IL-17 and Th17 cells. Annu Rev Immunol 27:485–517

    Article  CAS  PubMed  Google Scholar 

  • Krishnan A, Iyer LM, Holland SJ, Boehm T, Aravind L (2018) Diversification of AID/APOBEC-like deaminases in metazoa: multiplicity of clades and widespread roles in immunity. Proc Natl Acad Sci U S A 115:E3201–E3210

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kuraku S, Meyer A, Kuratani S (2009) Timing of genome duplications relative to the origin of the vertebrates: did cyclostomes diverge before or after? Mol Biol Evol 26:47–59

    Article  CAS  PubMed  Google Scholar 

  • Leulier F, Lemaitre B (2008) Toll-like receptors—taking an evolutionary approach. Nat Rev Genet 9:165–178

    Article  CAS  PubMed  Google Scholar 

  • Li J, Das S, Herrin BR, Hirano M, Cooper MD (2013) Definition of a third VLR gene in hagfish. Proc Natl Acad Sci U S A 110:15013–15018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu MC, Liao WY, Buckley KM, Yang SY, Rast JP, Fugmann SD (2018) AID/APOBEC-like cytidine deaminases are ancient innate immune mediators in invertebrates. Nat Commun 9:1948

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Luo M, Velikovsky CA, Yang X, Siddiqui MA, Hong X, Barchi JJ Jr, Gildersleeve JC, Pancer Z, Mariuzza RA (2013) Recognition of the Thomsen-Friedenreich pancarcinoma carbohydrate antigen by a lamprey variable lymphocyte receptor. J Biol Chem 288:23597–23606

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Matsuo A, Oshiumi H, Tsujita T, Mitani H, Kasai H, Yoshimizu M, Matsumoto M, Seya T (2008) Teleost TLR22 recognizes RNA duplex to induce IFN and protect cells from birnaviruses. J Immunol 181:3474–3485

    Article  CAS  PubMed  Google Scholar 

  • Matsushita M (2018) The complement system of agnathans. Front Immunol 9:1405

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Matsushita M, Matsushita A, Endo Y, Nakata M, Kojima N, Mizuochi T, Fujita T (2004) Origin of the classical complement pathway: lamprey orthologue of mammalian C1q acts as a lectin. Proc Natl Acad Sci U S A 101:10127–10131

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mayer WE, Uinuk-Ool T, Tichy H, Gartland LA, Klein J, Cooper MD (2002) Isolation and characterization of lymphocyte-like cells from a lamprey. Proc Natl Acad Sci U S A 99:14350–14355

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Medzhitov R, Janeway CA Jr (2002) Decoding the patterns of self and nonself by the innate immune system. Science 296:298–300

    Article  CAS  PubMed  Google Scholar 

  • Mitchell GF, Miller JF (1968) Immunological activity of thymus and thoracic-duct lymphocytes. Proc Natl Acad Sci U S A 59:296–303

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Miyashita T, Coates MI, Farrar R, Larson P, Manning PL, Wogelius RA, Edwards NP, Anne J, Bergmann U, Palmer AR, Currie PJ (2019) Hagfish from the Cretaceous Tethys Sea and a reconciliation of the morphological-molecular conflict in early vertebrate phylogeny. Proc Natl Acad Sci U S A 116:2146–2151

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Miyazawa S, Azumi K, Nonaka M (2001) Cloning and characterization of integrin alpha subunits from the solitary ascidian, Halocynthia roretzi. J Immunol 166:1710–1715

    Article  CAS  PubMed  Google Scholar 

  • Morales Poole JR, Huang SF, Xu A, Bayet J, Pontarotti P (2017) The RAG transposon is active through the deuterostome evolution and domesticated in jawed vertebrates. Immunogenetics 69:391–400

    Article  CAS  PubMed  Google Scholar 

  • Nagawa F, Kishishita N, Shimizu K, Hirose S, Miyoshi M, Nezu J, Nishimura T, Nishizumi H, Takahashi Y, Hashimoto S, Takeuchi M, Miyajima A, Takemori T, Otsuka AJ, Sakano H (2007) Antigen-receptor genes of the agnathan lamprey are assembled by a process involving copy choice. Nat Immunol 8:206–213

    Article  CAS  PubMed  Google Scholar 

  • Najakshin AM, Mechetina LV, Alabyev BY, Taranin AV (1999) Identification of an IL-8 homolog in lamprey (Lampetra fluviatilis): early evolutionary divergence of chemokines. Eur J Immunol 29:375–382

    Article  CAS  PubMed  Google Scholar 

  • Nielsen MM, Witherden DA, Havran WL (2017) γδ T cells in homeostasis and host defence of epithelial barrier tissues. Nat Rev Immunol 17:733–745

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nonaka M, Kimura A (2006) Genomic view of the evolution of the complement system. Immunogenetics 58:701–713

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nonaka M, Fujii T, Kaidoh T, Natsuume-Sakai S, Yamaguchi N, Takahashi M (1984) Purification of a lamprey complement protein homologous to the third component of the mammalian complement system. J Immunol 133:3242–3249

    CAS  PubMed  Google Scholar 

  • Ohta Y, Kasahara M, O’Connor TD, Flajnik MF (2019) Inferring the “primordial immune complex”: origins of MHC class I and antigen receptors revealed by comparative genomics. J Immunol 203:1882–1896

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pancer Z, Amemiya CT, Ehrhardt GR, Ceitlin J, Gartland GL, Cooper MD (2004a) Somatic diversification of variable lymphocyte receptors in the agnathan sea lamprey. Nature 430:174–180

    Article  CAS  PubMed  Google Scholar 

  • Pancer Z, Mayer WE, Klein J, Cooper MD (2004b) Prototypic T cell receptor and CD4-like coreceptor are expressed by lymphocytes in the agnathan sea lamprey. Proc Natl Acad Sci U S A 101:13273–13278

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pancer Z, Saha NR, Kasamatsu J, Suzuki T, Amemiya CT, Kasahara M, Cooper MD (2005) Variable lymphocyte receptors in hagfish. Proc Natl Acad Sci U S A 102:9224–9229

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Perey DY, Finstad J, Pollara B, Good RA (1968) Evolution of the immune response. VI. First and second set skin homograft rejections in primitive fishes. Lab Investig 19:591–597

    CAS  PubMed  Google Scholar 

  • Roach JC, Glusman G, Rowen L, Kaur A, Purcell MK, Smith KD, Hood LE, Aderem A (2005) The evolution of vertebrate toll-like receptors. Proc Natl Acad Sci U S A 102:9577–9582

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rogozin IB, Iyer LM, Liang L, Glazko GV, Liston VG, Pavlov YI, Aravind L, Pancer Z (2007) Evolution and diversification of lamprey antigen receptors: evidence for involvement of an AID-APOBEC family cytosine deaminase. Nat Immunol 8:647–656

    Article  CAS  PubMed  Google Scholar 

  • Satake H, Sekiguchi T (2012) Toll-like receptors of deuterostome invertebrates. Front Immunol 3:34

    Article  PubMed  PubMed Central  Google Scholar 

  • Sato A, Uinuk-ool TS, Kuroda N, Mayer WE, Takezaki N, Dongak R, Figueroa F, Cooper MD, Klein J (2003) Macrophage migration inhibitory factor (MIF) of jawed and jawless fishes: implications for its evolutionary origin. Dev Comp Immunol 27:401–412

    Article  CAS  PubMed  Google Scholar 

  • Shimeld SM, Donoghue PCJ (2012) Evolutionary crossroads in developmental biology: cyclostomes (lamprey and hagfish). Development 139:2091–2099

    Article  CAS  PubMed  Google Scholar 

  • Smith JJ, Timoshevskaya N, Ye C, Holt C, Keinath MC, Parker HJ, Cook ME, Hess JE, Narum SR, Lamanna F, Kaessmann H, Timoshevskiy VA, Waterbury CKM, Saraceno C, Wiedemann LM, Robb SMC, Baker C, Eichler EE, Hockman D, Sauka-Spengler T, Yandell M, Krumlauf R, Elgar G, Amemiya CT (2018) The sea lamprey germline genome provides insights into programmed genome rearrangement and vertebrate evolution. Nat Genet 50:270–277

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sower SA, Hausken KN (2017) A lamprey view on the origins of neuroendocrine regulation of the thyroid axis. Mol Cell Endocrinol 459:21–27

    Article  CAS  PubMed  Google Scholar 

  • Sugahara F, Murakami Y, Pascual-Anaya J, Kuratani S (2017) Reconstructing the ancestral vertebrate brain. Develop Growth Differ 59:163–174

    Article  Google Scholar 

  • Sutoh Y, Kasahara M (2014) Copy number and sequence variation of leucine-rich repeat modules suggests distinct functional constraints operating on variable lymphocyte receptors expressed by agnathan T cell-like and B cell-like lymphocytes. Immunogenetics 66:403–409

    Article  CAS  PubMed  Google Scholar 

  • Sutoh Y, Kasahara M (2016) The immune system of agnathans (jawless vertebrates). In: Ratcliffe MJH (ed) Encyclopedia of Immunobiology. Elsevier, Oxford, pp 468–473

    Chapter  Google Scholar 

  • Suzuki T, Shin IT, Kohara Y, Kasahara M (2004) Transcriptome analysis of hagfish leukocytes: a framework for understanding the immune system of jawless fishes. Dev Comp Immunol 28:993–1003

    Article  PubMed  Google Scholar 

  • Suzuki T, Shin-I T, Fujiyama A, Kohara Y, Kasahara M (2005) Hagfish leukocytes express a paired receptor family with a variable domain resembling those of antigen receptors. J Immunol 174:2885–2891

    Article  CAS  PubMed  Google Scholar 

  • Takaba H, Imai T, Miki S, Morishita Y, Miyashita A, Ishikawa N, Nishizumi H, Sakano H (2013) A major allogenic leukocyte antigen in the agnathan hagfish. Sci Rep 3:1716

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Takahama Y, Ohigashi I, Baik S, Anderson G (2017) Generation of diversity in thymic epithelial cells. Nat Rev Immunol 17:295–305

    Article  CAS  Google Scholar 

  • Takahashi M, Iwaki D, Matsushita A, Nakata M, Matsushita M, Endo Y, Fujita T (2006) Cloning and characterization of mannose-binding lectin from lamprey (Agnathans). J Immunol 176:4861–4868

    Article  CAS  PubMed  Google Scholar 

  • Tasumi S, Velikovsky CA, Xu G, Gai SA, Wittrup KD, Flajnik MF, Mariuzza RA, Pancer Z (2009) High-affinity lamprey VLRA and VLRB monoclonal antibodies. Proc Natl Acad Sci U S A 106:12891–12896

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Trambas CM, Griffiths GM (2003) Delivering the kiss of death. Nat Immunol 4:399–403

    Article  CAS  PubMed  Google Scholar 

  • Trapani JA, Smyth MJ (2002) Functional significance of the perforin/granzyme cell death pathway. Nat Rev Immunol 2:735–747

    Article  CAS  PubMed  Google Scholar 

  • Tsutsui S, Nakamura O, Watanabe T (2007) Lamprey (Lethenteron japonicum) IL-17 upregulated by LPS-stimulation in the skin cells. Immunogenetics 59:873–882

    Article  CAS  PubMed  Google Scholar 

  • Uinuk-Ool T, Mayer WE, Sato A, Dongak R, Cooper MD, Klein J (2002) Lamprey lymphocyte-like cells express homologs of genes involved in immunologically relevant activities of mammalian lymphocytes. Proc Natl Acad Sci U S A 99:14356–14361

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Uribe-Querol E, Rosales C (2017) Control of phagocytosis by microbial pathogens. Front Immunol 8:1368

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Velikovsky CA, Deng L, Tasumi S, Iyer LM, Kerzic MC, Aravind L, Pancer Z, Mariuzza RA (2009) Structure of a lamprey variable lymphocyte receptor in complex with a protein antigen. Nat Struct Mol Biol 16:725–730

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu F, Chen L, Liu X, Wang H, Su P, Han Y, Feng B, Qiao X, Zhao J, Ma N, Liu H, Zheng Z, Li Q (2013) Lamprey variable lymphocyte receptors mediate complement-dependent cytotoxicity. J Immunol 190:922–930

    Article  CAS  PubMed  Google Scholar 

  • Wu F, Feng B, Ren Y, Wu D, Chen Y, Huang S, Chen S, Xu A (2017) A pore-forming protein implements VLR-activated complement cytotoxicity in lamprey. Cell Discov 3:17033

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yamaguchi T, Takamune K, Kondo M, Takahashi Y, Kato-Unoki Y, Nakao M, Sano N, Fujii T (2014) Hagfish C1q: its unique binding property. Dev Comp Immunol 43:47–53

    Article  CAS  PubMed  Google Scholar 

  • Zhang Y, Cheng TC, Huang G, Lu Q, Surleac MD, Mandell JD, Pontarotti P, Petrescu AJ, Xu A, Xiong Y, Schatz DG (2019) Transposon molecular domestication and the evolution of the RAG recombinase. Nature 569:79–84

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

The authors thank the reviewers for their thoughtful comments.

Funding

This work was supported by Grants-in-Aid for Scientific Research from The Ministry of Education, Culture, Sports, Science and Technology of Japan (MEXT).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masanori Kasahara.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of Topical Collection on Fish Immunology

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sutoh, Y., Kasahara, M. The immune system of jawless vertebrates: insights into the prototype of the adaptive immune system. Immunogenetics 73, 5–16 (2021). https://doi.org/10.1007/s00251-020-01182-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00251-020-01182-6

Keywords

Navigation