Skip to main content

Advertisement

Log in

Drivers assessment of zooplankton grazing on phytoplankton under different scenarios of fish predation and turbidity in an in situ mesocosm experiment

  • Primary Research Paper
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

Zooplankton play a key role in energy transfer within lake food webs, but we have a poor knowledge concerning their role as phytoplankton grazers in shallow subtropical lakes. In this study, we aimed to determine how zooplankton grazing upon phytoplankton is altered in different scenarios of fish predation and turbidity, and we explored the relevance of grazing compared to other environmental variables, to explain phytoplankton biomass changes. A mesocosm experiment was conducted by including the following treatments: fish, turbidity, fish + turbidity, and a control (without fish or varying turbidity). The experiment lasted 21 days, and samples were taken four times. Zooplankton grazing was only effective for the microphagous group upon Cryptophyceae, while large Chlorophyceae and small pennate Bacillariophyceae biomass were benefited in the presence of copepods and cladocerans, being negatively affected by depletions in nitrogen availability. In the turbidity treatment, a reduction in phytoplankton biomass was obtained, artificially increasing zooplankton grazing on phytoplankton, while fish presence inhibited grazing of adult copepods and cladocerans. The other groups of phytoplankton were only influenced by the environment. This experiment suggests that phytoplankton biomass variations would be more affected by the environment than by zooplankton grazing in shallow lakes from the Paraná River.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Agostinho, A.A., L.C. Gomes & M. Zalewski, 2001. The importance of floodplains for the dynamics of fish communities of the upper river Paraná. Ecohydrology and Hydrobiology 1: 209–217.

  • Ahlstrom, E.H., 1940. A revision of the rotatorian genera Brachionus and Platyas with descriptions of one new species and two new varieties. Bulletin American Museum of Natural History 77: 143–184.

    Google Scholar 

  • Allende, L., G. Tell, H. Zagarese, A. Torremorell, G. Pérez, J. Bustingorry, R. Escaray & I. Izaguirre, 2009. Phytoplankton and primary production in clear-vegetated, inorganic- turbid and algal-turbid shallow lakes from the Pampa plain (Argentina). Hydrobiologia 624: 45–60.

    CAS  Google Scholar 

  • Amorim, C.A., C.R. Valenc¸ R.H. de Moura-Falcão, & A. do Nascimento Moura, 2019. Seasonal variations of morpho-functional phytoplankton groups influence the top-down control of a cladoceran in a tropical hypereutrophic lake. Aquatic Ecology 53: 453–464.

  • APHA. 2005. Standard Methods for the Examination of Water and Wastewater, 21st edn. American Public Health Association, Washington.

    Google Scholar 

  • Arcifa, M.S., A. Perticarrari, T.C. Bunioto, A.R. Domingos & W.J. Minto, 2016. Microcrustaceans and predators: diel migration in a tropical lake and comparison with shallow warm lakes. Limnetica 35: 281-296.

    Google Scholar 

  • Arruda, J.A., G.R. Marzolf & R.T. Faulk, 1983. Role of suspended sediments in the nutrition of zooplankton in turbid reservoirs. Ecology 64: 1225-1235.

    Google Scholar 

  • Attayde, J.L. & L.A. Hansson, 1999. Effects of nutrient recycling by zooplankton and fish on phytoplankton communities. Oecologia 121: 47–54.

  • Attayde, J.L., E.H. van Nes, A.I. Araujo, G. Corso & M. Scheffer, 2010. Omnivory by Planktivores Stabilizes Plankton Dynamics, but May Either Promote or Reduce Algal Biomass. Ecosystems 13: 410–420.

  • Barnett, A.J., K. Finlay & B.E. Beisner, 2007. Functional diversity of crustacean zooplankton communities: towards a trait-based classification. Freshwater Biology 52: 796–813.

  • Benndorf, J., W. Böing, J. Koop & I. Neubauer, 2002. Top-down control of phytoplankton: the role of time scale, lake depth and trophic state. Freshwater Biology 47: 2282-2295.

    Google Scholar 

  • Bottrell, H.H., A. Duncan, Z.M. Gliwicz, E. Grygierek, A. Herzig, A. Hillbricht-Ilkowska, H. Kurosawa, P. Larsson & T. Wêgleñska, 1976. A review of some problems in zooplankton production studies. Norwegian Journal of Zoology 24: 419-456.

    Google Scholar 

  • Boveri, M.B. & R. Quirós, 2002. Trophic interactions in Pampean shallow lakes: evaluation of silverside predatory effects on mesocosm experiments. Verhandlungen der Internationalen Vereinigung für Theoretische und Angewandte Limnologie 28:1274-1278.

    CAS  Google Scholar 

  • Chase, J.M., 2003. Strong and weak trophic cascades along a productivity gradient. Oikos 101: 187–195.

  • Chen, M. & F. Chen, 2017. Effect of suspended solids on interaction between filter-feeding fish Aristichthys nobilis and zooplankton in a shallow lake using a mesocosm experiment. Journal of Freshwater Ecology 32: 219–227.

    Google Scholar 

  • Cuker, B.E., P.T. Gama, & J.M. Burkholder, 1990. Type of suspended clay influences lake productivity and phytoplankton community response to phosphorus loading. Limnology and Oceanography, 35: 830–839.

  • Cyr, H., 1998. Cladoceran and copepod-dominated zooplankton communities graze at similar rate in low productivity lakes. Canadian Journal of Fisheries and Aquatic Science 55: 414-422.

    Google Scholar 

  • Diniz, A.S., J.S. Dos Santos Severiano, M. Melo Júnior, E.W. Dantas & A.N. Moura. 2019. Phytoplankton–zooplankton relationships based on phytoplankton functional groups in two tropical reservoirs. Marine and Freshwater Research 70: 721–733.

  • Dos Santos Severiano, J., V.L.S. Almeida-Melo, E.M. Melo-Magalhães, M.D. Bittencourt-Oliveira & A. do Nascimento Moura, 2017. Effects of zooplankton and nutrients on phytoplankton: an experimental analysis in a eutrophic tropical reservoir. Marine and Freshwater Research 68: 1061–1069

  • Drago, E.C. & M. Vassallo, 1980. Campaña limnológica “Keratella I” en el río Paraná Medio: Características físicas y químicas del río y ambientes leníticos asociados. Ecología 4: 45–54.

    Google Scholar 

  • Drago, E.C. & M. Amsler, 1988. Suspended sediment at a cross section of the Middle Paraná River: concentration, granulometry and influence on the main tributaries. Sediment Budgets 174: 381–385.

    Google Scholar 

  • Drago, E., 1989. Morphological and hydrological characteristics of the floodplain ponds of the Middle Paraná River (Argentina). Revue d'Hydrobiologie Tropicale 22: 183–190.

    Google Scholar 

  • Dumont, H.J., I. Van de Velde & S. Dumont, 1975. The dry weight estimate of biomass in a selection of Cladocera, Copepoda and Rotifera from the plankton, periphyton and benthos of continental waters. Oecologia 19: 79–97.

  • Eichbaum Esteves K., 1996. Feeding ecology of three Astyanax species (Characidae, Tetragonopterinae) from a floodplain lake of Mogi-Guagu River, Parana River Basin, Brazil. Environmental Biology of Fishes 46: 83-101.

    Google Scholar 

  • Frau, D., M. Devercelli, S. José de Paggi, P. Scarabotti, G. Mayora, Y. Battauz & M. Senn, 2015. Can top-down and bottom-up forces explain phytoplankton structure in a subtropical and shallow groundwater connected lake? Marine and Freshwater Research 66: 1106-1115.

    Google Scholar 

  • Frau, D., Y. Battauz & R. Sinistro, 2017. Why predation is not a controlling factor of phytoplankton in a Neotropical shallow lake: a morpho-functional perspective. Hydrobiologia 788: 115-130.

    CAS  Google Scholar 

  • Frau, D., Y. Battauz, P. Alvarenga, P. Scarabotti, G. Mayora & R. Sinistro, 2019. Assessing the relevance of top down and bottom up effects as phytoplankton structure drivers in a subtropical hypereutrophic shallow lake. Aquatic Ecology 53: 265–280.

    CAS  Google Scholar 

  • Goździejewska, A., K. Glinska‐Lewczuk, K. Obolewski, M. Grzybowski, R. Kujawa, S. Lew & M. Grabowska, 2016. Effects of lateral connectivity on zooplankton community structure in floodplain lakes. Hydrobiologia 774: 7–21.

    Google Scholar 

  • Guenther, M. & R.L. Bozelli, 2004. Effects of inorganic turbidity on the phytoplankton of an Amazonian lake impacted by bauxite tailings. Hydrobiologia 511: 151-159.

    Google Scholar 

  • Hammer, Ø., D.A. Harper & P.D. Ryan, 2018. PAST-Palaeontological Statistics, version 3.18. University of Oslo, Oslo.

    Google Scholar 

  • Hauer, C., P. Leitner, G. Unfer, U. Pulg, H. Habersack & W. Graf, 2018. The role of sediment and sediment dynamics in the aquatic environment. In Schmutz, S. & J. Sendzimir (eds), Riverine Ecosystem Management. Aquatic Ecology Series, vol 8. Springer, Cham.

    Google Scholar 

  • Havens, K.E., J.R. Beaver & T.L. East, 2013. Zooplankton to phytoplankton biomass ratios in shallow Florida lakes: an evaluation of seasonality and hypotheses about factors controlling variability. Hydrobiologia 703: 177–187.

    CAS  Google Scholar 

  • Hillebrand, H., C. Dürselen, D. Kirschtel, U. Pollingher & T. Zohary, 1999. Biovolume calculation for pelagic and benthic microalgae. Journal of Phycology 35: 403-424.

    Google Scholar 

  • Hilton, J., & Rigg, E. (1983). Determination of nitrate in lake water by the adaptation of the hydrazine-copper reduction method for use on a discrete analyser: performance statistics and an instrument-induced difference from segmented flow conditions. Analyst, 108(1289), 1026–1028.

  • Holt, R.D. & M.F. Hoopes, 2005. Food web dynamics in a metacommunity context: modules and beyond. In Holyoak, M., M.A. Leibold & R.D. Holt (eds), Metacommunities: Spatial Dynamics and Ecological Communities. University of Chicago Press, Chicago: 68-94.

    Google Scholar 

  • Horppila, J. & L. Nurminen, 2005. Effects of different macrophyte growth forms on sediment and P resuspension in a shallow lake. Hydrobiologia 545: 167-175.

    CAS  Google Scholar 

  • Iglesias, C., N. Mazzeo, G. Goyenola, C. Fosalba, F. Teixeira de Mello, S. García & E. Jeppesen, 2008. Field and experimental evidence of the effect of Jenynsia multidentata, a small omnivorous–planktivorous fish, on the size distribution of zooplankton in subtropical lakes. Freshwater Biology 53: 1797–1807.

    Google Scholar 

  • Iglesias, C., N. Mazzeo, M. Meerhoff, G. Lacerot, J.M. Clemente, F. Scasso, C. Kruk, G. Goyenola, J. García-Alonso, S.L. Amsinck, J.C. Paggi, S. José de Paggi & E. Jeppesen, 2011. High predation is of key importance for dominance of small-bodied zooplankton in warm shallow lakes: evidence from lakes, fish enclosures and surface sediments. Hydrobiologia 667:133–147.

    Google Scholar 

  • Iglesias, C., E. Jeppesen, N. Mazzeo, J.P. Pacheco, F. Texeira de Mello, C. Fosalba, J.M. Clemente & M. Meerhoff, 2017. Fish but not macroinvertebrates promote trophic cascading effects in high density submersed plant experimental lake food webs in two contrasting climate regions. Water 9: 514.

    Google Scholar 

  • Izaguirre, I., L. Allende, R. Escaray, J. Bustingorry, G. Pérez G. & G. Tell, 2012. Comparison of morpho-functional phytoplankton classifications in human-impacted shallow lakes with different stable states. Hydrobiologia 698: 203–216.

    CAS  Google Scholar 

  • Izaguirre, I., I. O’Farrell, F. Unrein, R. Sinistro, M. dos Santos Afonso & G. Tell, 2004. Algal assemblages across a wetland, from a shallow lake to relictual oxbow lakes (Lower Paraná River, South America). Hydrobiologia 511: 25–36.

    CAS  Google Scholar 

  • James, W.F. & J.W. Barko, 1990. Macrophyte influences on the zonation of sediment accretion and composition in a north-temperate lake. Archiv für Hydrobiologie 20: 129-142.

    Google Scholar 

  • Jeppesen, E., J.P. Jensen, C. Faafeng, B. Hessen, D.O. Søndergaard, M. Lauridsen, T. Brettum, & K. Christoffersen, 2003. The impact of nutrient state and lake depth on top-down control in the pelagic zone of lakes: a study of lakes from the temperate zone to the arctic. Ecosystems 6: 313–325.

    CAS  Google Scholar 

  • José de Paggi, S.B. & J.C. Paggi, 1995. Determinación de la abundancia y biomasa zooplanctónica. In Lopretto, E. & G. Tell (eds), Ecosistemas de Aguas Continentales. Metodologías para su estudio. Ediciones Sur, La Plata, Argentina: 315-323.

    Google Scholar 

  • José de Paggi, S. & J.C. Paggi, 2007. Zooplankton. In Iriondo, M.H., J.C. Paggi & M.J. Parma (eds), The Middle Paraná River: Limnology of a Subtropical Wetland. Springer-Verlag, Berlin: 229-245.

    Google Scholar 

  • José de Paggi, S. & J.C. Paggi, 2008. Hydrological connectivity as a shaping force in the zooplankton community of two lakes in the Paraná River floodplain. International Review of Hydrobiology 93: 659-678.

    Google Scholar 

  • Komárek, J. 2013. Cyanoprokaryota.Teil/3rd part: heterocytous genera. In: Büdel, L. Gärtner, M. Krienitz, M. Chagerl (eds). Süswasserflora von Mitteleuropa (Freshwater flora of Central Europe).Springer Spektrum, Berlin.

    Google Scholar 

  • Komárek, J. & K. Anagnostidis, 1999. Cyanoprokariota. 1. Chroococcales. In Ettl H., Gärtner G., Heynig G. and Mollenhauer D. (eds), Subwasserflora von Mitteleuropa. 19. Gustav Fisher, Jena, Stutgart.

    Google Scholar 

  • Komárek, J. & M. Anagnostidis, 2005. Cyanoprokaryota 2. teil/ 2nd part: oscillatoriales. In Büdel B., L. Krienitz, G. Gärtner & M. Scnagerl (eds), Süsswasserflora von Mitteleuropa 19/2, Elsevier/Spektrum, Heidelberg.

    Google Scholar 

  • Komárek, J. & B. Fott, 1983. Chlorophyceae, chlorococcales. In Huber-Pestalozzi, G. (ed), Das Phytoplankton des Sdwasswes. Die Binnenggewasser, vol. 16(5). Schweizerbart'sche Verlagsbuchhandlung, Stuttgart.

    Google Scholar 

  • Koste, W., 1978. Rotatoria. Die Radertiere Mitteleuropas, Gebruder Borntraeger, Germany.

    Google Scholar 

  • Krammer, K. & H. Lange-Bertalot, 1991. Bacillariophyceae. 3. Teil Centrales, Fragilariaceae, Eunotiaceae. In Ettl, H., J. Gerloff, H. Heynig & D. Mollenhauer. (eds), Susswasserflora von Mitteleuropa, Gustav Fischer Verlag, Stuttgart.

    Google Scholar 

  • Lansac-Tôha, F.A., C.C. Bonecker, L.F.M. Velho, N.R. Simões, J.D. Dias, G.M. Alves, E.M. Takahashi, 2009. Biodiversity of zooplankton communities in the Upper Paraná River floodplain: interannual variation from long-term studies. Brazilian Journal of Biology 69: 539–549.

  • Lougheed, V.L. & P. Chow-Fraser, 1998. Factors that regulate the zooplankton community structure of a turbid, hypereutrophic Great Lakes wetland. Canadian Journal of Fisheries and Aquatic Sciences 55: 150–161.

    Google Scholar 

  • Levine, S.N., M.A. Borchardt, M. Braner & A.D. Shambaugh, 1999. The impact of zooplankton grazing on phytoplankton species composition and biomass in lake Champlain (USA-Canada). Journal of Great Lakes Research 25: 61-77.

    Google Scholar 

  • Lima, M.R., E. Bessa, D. Krinski & L.N. Carvalho. 2012. Mutilating predation in the Cheirodontinae Odontostilbe pequira (Characiformes: Characidae). Neotropical Ichthyology 10: 361-368.

    Google Scholar 

  • Mamani, A., M.L. Koncurat & M. Boveri, 2019. Combined effects of fish and macroinvertebrate predation on zooplankton in a littoral mesocosm experiment. Hydrobiologia 829: 19–29.

    CAS  Google Scholar 

  • Mangini, S., H.H. Prendes, M.L. Amsler, J. Huespe, 2003. Importancia de la floculación en la sedimentación de la carga de lavado en ambientes del río Paraná. Revista Ingeniería Hidráulica en México 18: 55–69.

  • McQueen, D.J., M.R.S Johannes., J.R. Post, T.J. Stewart & D.R.S. Lean, 1989. Bottom-up and top-down impacts on freshwater pelagic community structure. Ecological Monographs 59: 289–309.

  • Meerhoff, M., N. Mazzeo, B. Moss & L. Rodríguez-Gallego, 2003. The structuring role of free-floating versus submerged plants in a subtropical shallow lake. Aquatic Ecology 37: 377–391.

    Google Scholar 

  • Naselli-Flores L. & R. Barone, 2011. Invited review- fight on plankton! or, phytoplankton shape and size as adaptive tools to get ahead in the struggle for life. Cryptogamie Algologie 32: 157-204.

    Google Scholar 

  • Nieman, C.L & S.M. Gray, 2019. Visual performance impaired by elevated sedimentary and algal turbidity in walleye Sander vitreus and emerald shiner Notropis atherinoides. Journal of Fish Biology. Doi:: 10.1111/jfb.13878.

    Article  PubMed  Google Scholar 

  • Obertegger, U., H.A. Smith, G. Flaim & R.L. Wallace, 2011. Using the guild ratio to characterize pelagic rotifer communities. Hydrobiologia 662: 157-162.

    Google Scholar 

  • Ojaveer, H.L., A. Kuhns, R.P. Barbiero & M.L. Tuchman, 2001. Distribution and population characteristics of Cercopagis pengoi in Lake Ontario. Journal of Great Lakes Research 27: 10–18.

    Google Scholar 

  • Okun, N., J. Jandeson Brasil, L. Attayde & I.A.S. Costa, 2008. Omnivory does not prevent trophic cascades in pelagic food webs. Freshwater Biology 53: 129-138.

    Google Scholar 

  • Oliveros, O.B., 1980. Campaña Limnológica “Keratella I” en el río Paraná medio: aspectos tróficos de los peces de ambientes leníticos. Ecologia 4: 115-126.

    Google Scholar 

  • Paggi, J.C. 1973. Contribución al conocimiento de los Cladóceros dulceacuícolas argentinos. Physis 32: 105–114.

    Google Scholar 

  • Paggi, J.C., 1979. Revisión de las especies argentinas del género Bosmina Baird agrupadas en el agrupadas en el sugénero Neobosmina Lieder (Crustacea, Cladocera). Acta Zoolica Lilloana 35: 137–162.

    Google Scholar 

  • Rangel, L.M., L.H.S. Silva, P. Rosa, F. Roland & V.L.M. Huszar, 2012. Phytoplankton biomass is mainly controlled by hydrology and phosphorus concentrations in tropical hydroelectric reservoirs. Hydrobiologia 693: 13–28.

    CAS  Google Scholar 

  • Rennella, A.M. & R. Quirós, 2006. The effects of hydrology on plankton biomass in shallow lakes of the Pampa Plain. Hydrobiologia 556: 181–191.

    Google Scholar 

  • Reynolds, C.S., V. Huszar, C. Kruk, L. Naselli-Flores & S. Melo, 2002. Towards a functional classification of the freshwater phytoplankton. Journal of Plankton Research 24: 417–428.

    Google Scholar 

  • Reynolds, C., 2006. Ecology of Phytoplankton. University Press, United Kingdom.

    Google Scholar 

  • Rocha, O. & A. Duncan, 1985. The relationship between cell carbon and cell volume in freshwater algal species used in zooplankton studies. Journal of Plankton Research 7: 279–294.

    Google Scholar 

  • Roff, J.C., J.T. Turner, M.K. Webber & R.R. Hopcroft, 1995. Bacterivory by tropical copepod nauplii: extent and possible significance. Aquatic Microbial Ecology 9: 165-175.

    Google Scholar 

  • Ruttner‐Kolisko, A., 1977. Suggestions for biomass calculation of plankton rotifers. Archives Hydrobiologia 8: 71‐76

    Google Scholar 

  • Salmaso, N. & J. Padisák, 2007. Morpho-Functional Groups and phytoplankton development in two deep lakes (Lake Garda, Italy and Lake Stechlin, Germany). Hydrobiologia 578: 97-112.

    Google Scholar 

  • Scarabotti, P.A., J.A. López & M. Pouilly. 2011. Flood pulse and the dynamics of fish assemblage structure from neotropical floodplain lakes. Ecology of Freshwater Fish 20: 605-618.

    Google Scholar 

  • Scarabotti, P.A., L.D. Demonte & M. Pouilly, 2017. Climatic seasonality, hydrological variability, and geomorphology shape fish assemblage structure in a subtropical floodplain. Freshwater Sciences 36: 653–668.

    Google Scholar 

  • Scasso, F., N. Mazzeo, J. Gorga, C. Kruk, G. Lacerot, J. Clemente, D. Fabián, S. Bonilla, 2001. Limnological changes of a subtropical shallow hypertrophic lake during its restoration. Two years of whole-lake experiments. Aquatic Conservation: Marine and Freshwater Ecosystems 11: 31–44.

    Google Scholar 

  • Sinistro, R., 2010. Top-down and bottom-up regulation of planktonic communities in a warm temperate wetland. Journal of Plankton Research 2: 209-220.

    Google Scholar 

  • Szlauer, RL., 1964. Reaction of Daphnia to the approach of different objects. Polskie Archiwum Hydrobiologii 12: 5-16.

    Google Scholar 

  • Tell, G. & V. Conforti. 1986. Euglenophyta pigmentadas de Argentina. In Cramer, J. (ed.), Bibliotheca Phycologica, Berlin, Germany.

  • ter Braak, C.J. & P. Šmilauer, 2012. Canoco reference manual and user's guide: software for ordination, version 5.0. Microcomputer Power, Ithaca.

    Google Scholar 

  • Thomaz, S.M., M. Bini & R.L. Bozelli. 2007. Floods increase similarity among aquatic habitats in river–floodplain systems. Hydrobiologia 579: 1-13.

    Google Scholar 

  • Torremorell, A., M.E. Llames, G.L. Pérez, R. Escaray, J. Bustingorry & H. Zagarese, 2009. Annual patterns of phytoplankton density and primary production in a large, shallow lake: the central role of light. Freshwater Biology 54: 437–449.

    Google Scholar 

  • Utermöhl, H., 1958. ZurVervollkommnung der quantitative Phytoplankton: methodik. Verhandlungen der Internationalen Vereinigung für Theoretische und Angewandte Limnologie 9: 1–38.

    Google Scholar 

  • van der Sluijs, I., S.M. Gray, M.C.P. Amorim, I. Barber, U. Candolin, A.P. Hendry, R. Krahe, M.E. Maan, A.C. Utne-Palm, H.J. Wagner & B.B.M. Wong, 2011. Communication in troubled waters: The evolutionary implications of changing environments on fish communication systems. Evolutionary Ecology 25: 623-640.

    Google Scholar 

  • Venrick, E.L., 1978. How many cells to count? In von sournia, A. (ed), Phytoplankton Manual. UNSECO, France: 167-80.

    Google Scholar 

  • Weers, P.M.M. & R.D. Gulati, 2003. Growth and reproduction of Daphnia galeata in response to changes in fatty acids, phosphorus and nitrogen in Chlamydomonas reinhardtii. Limnology and Oceanography 42: 1584-1589

    Google Scholar 

  • Ye, L., C. Chang, C. García-Comas, C. Gong & C. Hsieh, 2013. Increasing zooplankton size diversity enhances the strength of top-down control on phytoplankton through diet niche partitioning. Journal of Animal Ecology 82: 1052–1061.

    Google Scholar 

  • Zalocar de Domitrovic, Y. & N.I. Maidana, 1997. Taxonomic and ecological studies of the Parana River diatom flora (Argentina). Biblioteca diatomológica, 29:1-212

    Google Scholar 

  • Zhou, L.B. & F.Z. Chen, 2015. Effect of sediment resuspension of predation of planktivorous fish on zooplankton. Journal of Lake Sciences 27: 911-916.

    Google Scholar 

  • Zhou, J., B. Qin & X. Han, 2018. The synergetic effects of turbulence and turbidity on the zooplankton community structure in large, shallow Lake Taihu. Environmental Science and Pollution Research 25: 1168–1175.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We especially thank to C. Mora and D. Alberto for their assistance in the chemical and physical analyses. We also thank anonymous reviewers who improve this manuscript with their comments. This experiment was supported by the project PIP 0395CO (Consejo Nacional de Investigaciones Científicas y Técnicas, Argentina). Franco Teixeira de Mello was supported by the Sistema Nacional de Investigadores (SNI) and the Programa de Desarrollo de las Ciencias Básicas (PEDECIBA, Uruguay).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Diego Frau.

Additional information

Handling editor: Maria de los Angeles Gonzalez Sagrario

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Frau, D., Gutierrez, M.F., Molina, F.R. et al. Drivers assessment of zooplankton grazing on phytoplankton under different scenarios of fish predation and turbidity in an in situ mesocosm experiment. Hydrobiologia 848, 485–498 (2021). https://doi.org/10.1007/s10750-020-04456-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-020-04456-y

Keywords

Navigation