Skip to main content
Log in

Water droplet freezing on cold surfaces with distinct wetabilities

  • Original
  • Published:
Heat and Mass Transfer Aims and scope Submit manuscript

Abstract

This paper investigates the total freezing time of droplets on surfaces with various wettabilities with horizontal and inclined orientations. A two-dimensional Volume of Fluid (VOF) method was applied to capture the liquid-air interface, and an automatic localized grid treatment technique was applied to increase the accuracy, especially near the impact and spreading areas. The Kistler and Shikhumurzaev dynamic contact angle models were implemented to impose the dynamic contact angles on different surfaces. An enthalpy-porosity technique was used to predict the phase change of droplets after impact with the surface. The results of the nondimensional droplet diameter ratios and total freezing times for both dynamic contact angle models have been presented and verified with experimental data. The effects of both wetting properties and the surface inclination on the freezing time have been analyzed. The results indicate that a lower surface temperature, a decrease in static contact angle and a higher inclination will result in more rapid freezing of droplets.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Abbreviations

\(\rho\) :

Density

\(\overrightarrow{v}\) :

two-dimensional velocity field

\({x}_{i}\) :

two-dimensional space

\(t\) :

time

\(\overrightarrow{g}\) :

gravitational acceleration

\(\overrightarrow{{\uptau }}\) :

tress tensor

\(\nu\) :

kinematic viscosity

\(I\) :

unit tensor

\(\mu\) :

Viscosity

\(S\) :

source term

\(\beta\) :

liquid fraction

\({v}_{p}\) :

pull velocity

\({A}_{mush}\) :

mushy zone constant

\({a}_{p}\) :

Volume fraction in the cell

\({p}^{th}\) :

Phase name

\(\phi\) :

Level set function

\(Ca\) :

Capillary number

\(\sigma\) :

Surface tension

\(u\) :

contact line velocity

\({f}_{H}\) :

Hoffman’s function

\({\theta }_{eq}\) :

equilibrium contact angle

\({\theta }_{dyn}\) :

Dynamic contact angle

\(H\) :

enthalpy per unit volume

\(\lambda\) :

thermal conductivity

\(h\) :

sensible enthalpy

\({h}_{ref}\) :

sensible enthalpy at a reference temperature

\(c\) :

specific heat

\(\Delta H\) :

modified latent heat equation

\({\alpha }_{l}\) :

liquid volume fraction

\(L\) :

latent heat of the phase change

\(\gamma\) :

liquid volume fraction of a numerical cell occupied by solid and liquid

\(T\) :

Temperature

\(\alpha\) :

Inclined surface angle

\(\theta\) :

Static contact Angle

\({\theta }_{A}\) :

Advancing contact angle

\({\theta }_{R}\) :

Receding contact angle

\(We\) :

Droplet Weber number

\(Re\) :

Droplet Reynolds number

\({V}_{0}\) :

Droplet initial velocity

\({D}_{0}\) :

Droplet initial diameter

\(D/{D}_{0}\) :

droplet diameter ratio

References

  1. Kim J (2007) Spray cooling heat transfer: The state of the art. Int J Heat Fluid Fl 28(4):753–767

    Google Scholar 

  2. Kandlikar SG, Bapat AV (2007) Evaluation of jet impingement, spray and microchannel chip cooling options for high heat flux removal. Heat Transfer Eng 28(11):911–923

    Google Scholar 

  3. Jiang XL, Jun M, Wang SH (2005) Transmission lines’ ice accidents and analysis of the formative factors. Electr Power 38:27–30

    Google Scholar 

  4. Kulinich SA, Farzaneh M (2009) Ice adhesion on super-hydrophobic surfaces. Appl Surf Sci 255:8153–8157

    Google Scholar 

  5. Tourkine P, Merrer ML, Quere D (2009) Delayed freezing on water repellent materials. Langmuir 25:7214–7216

    Google Scholar 

  6. Rein M (1993) Phenomena of liquid drop impact on solid and liquid surfaces. Fluid Dyn Res 12(2):61–93

    Google Scholar 

  7. Yarin AL (2006) Drop impact dynamics: splashing, spreading, receding, bouncing. Annu Rev Fluid Mech 38(1):159–192

    MathSciNet  MATH  Google Scholar 

  8. Marengo M, Antonini C, Roisman IV, Tropea C (2011) Drop collisions with simple and complex surfaces. Curr Opin Colloid Interface Sci 16(4):292–302

    Google Scholar 

  9. Roismana IV, Opfer L, Tropea C, Raessi M, Mostaghimi J, Chandra S (2008) Drop impact onto a dry surface: Role of the dynamic contact angle. Colloids Surf A Physicochem Eng Asp 322:183–191

    Google Scholar 

  10. Huh C, Scriven LE (1971) Hydrodynamic model of steady movement of a solid/ liquid/fluid contact line. J Colloid Interface Sci 35(1):85–101

    Google Scholar 

  11. Afkhami S, Zaleski S, Bussmann M (2009) A mesh-dependent model for applying dynamic contact angles to VOF simulations. J Comput Phys 228(15):5370–5389

    MathSciNet  MATH  Google Scholar 

  12. Malgarinos I, Nikolopoulos N, Marengo M, Antonini C, Gavaises M (2014) VOF simulations of the contact angle dynamics during the drop spreading: standard models and a new wetting force model. Adv Colloid Interface Sci 212:1–20

    Google Scholar 

  13. Vu TV, Dao KV, Pham BD (2018) Numerical simulation of the freezing process of a water drop attached to a cold plate. J Mech Sci Technol 32(5):2119–2126

    Google Scholar 

  14. Tembely M, Dolatabadi A (2019) A comprehensive model for predicting droplet freezing features on a cold substrate. J Fluid Mech 859:566–585

    MathSciNet  MATH  Google Scholar 

  15. Blake J, Thompson D, Raps D, Strobl T (2015) Simulating the freezing of supercooled water droplets impacting a cooled substrate. AIAA J 53(7):1725–1739

    Google Scholar 

  16. Sui Y, Spelt PD (2013) An efficient computational model for macroscale simulations of moving contact lines. J Comput Phys 242:37–52

    MathSciNet  MATH  Google Scholar 

  17. Yokoi K, Vadillo D, Hinch J, Hutchings I (2009) Numerical studies of the influence of the dynamic contact angle on a droplet impacting on a dry surface. Phys Fluids 21(7):072102–072112

    MATH  Google Scholar 

  18. Dussan EB (1979) On the spreading of liquids on solid surfaces: static and dynamic contact lines. Annu Rev Fluid Mech 11(1):371–400

    MathSciNet  Google Scholar 

  19. PGD. Gennes, Wetting: statics and dynamics. Rev Mod Phys 1985; 57(3):827–863

    MathSciNet  Google Scholar 

  20. Shikhmurzaev YD (2006) Singularities at the moving contact line. Mathematical, physical and computational aspects. Phys D 217(2):121–133

    MathSciNet  MATH  Google Scholar 

  21. Chandra S, Avedisian CT (1991) On the collision of a droplet with a solid surface. Proc R Soc Lond A Math Phys Sci 432(1884):13–41

    Google Scholar 

  22. Pasandideh-Fard M, Qiao YM, Chandra S, Mostaghimi J (1996) Capillary effects during droplet impact on a solid surface. Phys Fluids 8(3):650–659

    Google Scholar 

  23. Vadillo DC, Soucemarianadin A, Delattre C, Roux DCD (2009) Dynamic contact angle effects onto the maximum drop impact spreading on solid surfaces. Phys Fluids 21(12):122002–122008

    MATH  Google Scholar 

  24. Kim HY, Chun JH (2001) The recoiling of liquid droplets upon collision with solid surfaces. Phys Fluids 13(3):643–659

    MATH  Google Scholar 

  25. Zhang X, Basaran OA (1997) Dynamic surface tension effects in impact of a drop with a solid surface. J Colloid Interface Sci 187(1):166–178

    Google Scholar 

  26. Range K, Feuillebois F (1998) Influence of surface roughness on liquid drop impact. J Colloid Interface Sci 203(1):16–30

    Google Scholar 

  27. Jin Z, Sui D, Yang Z (2015) The impact, freezing, and melting processes of a water droplet on an inclined cold surface. Int J Heat Mass Transf 90:439–453

    Google Scholar 

  28. Jin Z, Wang Z, Sui D, Yang Z (2016) The impact and freezing processes of a water droplet on different inclined cold surfaces. Int J Heat Mass Transf 97:211–213

    Google Scholar 

  29. Mishchenko L, Hatton B, Bahadur V, Taylor JA, Krupenkin T, Aizenberg J (2010) Design of ice-free nanostructured surfaces based on repulsion of impacting water droplets. ACS Nano 4:7699–7707

    Google Scholar 

  30. Feuillebois A, Lasek A, Creismeas P, Pigeonneau F, Szaniawski A (1995) Freezing of a subcooled liquid droplet. J Colloid Interf Sci 169:90–102

    Google Scholar 

  31. Wang J, Liu Z, Gou Y, Zhang X, Cheng S (2006) Deformation of freezing water droplets on a cold copper surface. Sci China Ser 49:590–600

    Google Scholar 

  32. Jin Z, Hu H (2019) Quantification of unsteady heat transfer and phase changing process inside small icing water droplets. Rev Sci Instrum 80:054902

    Google Scholar 

  33. Hirt CW, Nichols BD (1981) Volume of Fluid (VOF) method for the dynamics of free boundaries. J Comput Phys 39(1):201–225

    MATH  Google Scholar 

  34. Ming P, Jiao Y, Li C, Zhang W (2016) A parallel VOF method for simulation of water impact on rigid structure. In Procedia Eng 61:306–314

    Google Scholar 

  35. Aniszewski W, Ménard T, Marek M (2014) Volume of Fluid (VOF) type advection methods in two-phase flow: A comparative study. In Comput Fluids 97:52–73

    MathSciNet  MATH  Google Scholar 

  36. Young DL (1982) Time-dependent multi-material flow with large fluid distortion. In: Morton KW, Baines MJ (eds) Numerical methods in fluid dynamics. Academic, Cambridge, pp 273–285

  37. Sussman M, Puckett E (2000) A coupled level set and volume-of-fluid method for computing 3d and axisymmetric incompressible two-phase flows. J Comput Phys 162:301–337

    MathSciNet  MATH  Google Scholar 

  38. Kistler SF (1993) Hydrodynamics of wetting. Wettability. Marcel Dekker, New York, p 311

  39. Shikhmurzaev YD (2007) Capillary flows with forming interfaces. CRC Press, Boca Raton

  40. Brackbill JU, Kothe DB, Zemach C (1992) A continuum method for modeling surface tension. J Comput Phys 100(2):335–354

    MathSciNet  MATH  Google Scholar 

  41. Voller VR, Prakash C (1987) A fixed grid numerical modeling methodology for convection-diffusion mushy region phase-change problems. Int J Heat Mass Transfer 30(8):1709–1719

    Google Scholar 

  42. Leonard BP (1979) A stable and accurate convective modeling procedure based on quadratic upstream interpolation. Comput Methods Appl Mech Eng 19:59–98

    MATH  Google Scholar 

  43. Youngs DL (1982) Time-dependent multi-material flow with large fluid distortion. In: Morton KW, Baines MJ (eds) Numerical methods for fluid dynamics. Academic, Cambridge

    Google Scholar 

  44. Leonard BP, Mokhtari S (1993) ULTRA-SHARP Nonoscillatory convection schemes for high-speed steady multidimensional flow. NASA Lewis Research Center, NASATM1-2568 (ICOMP-90-12), Cleveland

  45. Wang MJ, Lin FH, YanOng J, Lin ShY (2009) Dynamic behaviors of droplet impact and spreading—Water on glass and paraffin. Colloids Surf A 339(1–3):224–231

    Google Scholar 

  46. Pan Y, Shi K, Duan X, Naterer GF (2019) Experimental investigation of water droplet impact and freezing on micropatterned stainless steel surfaces with varying wettabilities. Int J Heat Mass Transf 129:953–964

    Google Scholar 

  47. Chaudhary G, Li R (2014) Freezing of water droplets on solid surfaces: an experimental and numerical study. Exp Therm Fluid Sci 57(3):86–93

    Google Scholar 

  48. Yao Y, Li. C, Zhang H, Yang R (2017) Modeling the impact, spreading and freezing of a water droplet on horizontal and inclined superhydrophobic cooled surfaces. Appl Surf Sci 419:52–62

    Google Scholar 

  49. Jin Z, Zhang H, Tang Z (2017) Experimental investigation of the impact and freezing processes of a water droplet on an ice surface. Int J Heat Mass Transf 109:716–724

    Google Scholar 

Download references

Acknowledgements

The authors acknowledge the financial support from a Natural Sciences and Engineering Research Council of Canada (NSERC) Discovery Grant (RGPIN-2015-03940).

Funding

This research is financially supported by a Natural Sciences and Engineering Research Council of Canada (NSERC) Discovery Grant (RGPIN-2015-03940).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Armin Bodaghkhani.

Ethics declarations

Conflict of interest

The authors confirm that they don’t have any conflict of interest in this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bodaghkhani, A., Duan, X. Water droplet freezing on cold surfaces with distinct wetabilities. Heat Mass Transfer 57, 1–10 (2021). https://doi.org/10.1007/s00231-020-02984-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00231-020-02984-w

Keywords

Navigation