Skip to main content
Log in

Local Model of Entangled Photon Experiments Compatible with Quantum Predictions Based on the Reality of the Vacuum Fields

  • Published:
Foundations of Physics Aims and scope Submit manuscript

Abstract

Arguments are provided for the reality of the quantum vacuum fields. A polarization correlation experiment with two maximally entangled photons created by spontaneous parametric down-conversion is studied in the Weyl–Wigner formalism, that reproduces the quantum predictions. An interpretation is proposed in terms of stochastic processes assuming that the quantum vacuum fields are real. This proves that local realism is compatible with a violation of Bell inequalities, thus rebutting the claim that it has been refuted by experiments. Entanglement appears as a correlation between fluctuations of a signal field and vacuum fields.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Shalm, L.K., et al.: A strong loophole-free test of local realism. Phys. Rev. Lett. 115, 250402 (2015)

    Article  ADS  Google Scholar 

  2. Giustina, M., et al.: A significant loophole-free test of Bellś theorem with entangled photons. Phys. Rev. Lett. 115, 250401 (2015)

    Article  ADS  Google Scholar 

  3. Einstein, A., Podolsky, B., Rosen, N.: Can quantum-mechanical description of physical reality be considered complete? Phys. Rev. 47, 777–780 (1935)

    Article  ADS  Google Scholar 

  4. Einstein, A.: Remarks concerning the essays brought together in this co-operative volume. In: Schilpp, P.A. (ed.) Albert Einstein: Philosopher-Scientist, pp. 665–688. Open Court, La Salle (1949)

    Google Scholar 

  5. Bell, J.S.: On the Einstein, Podolsky and Rosen paradox. Physics 1, 195 (1964)

    Article  MathSciNet  Google Scholar 

  6. Brunner, N., Cavalcanti, D., Pironio, S., Scarani, V., Wehner, S.: Bell nonlocality. Rev. Mod. Phys. 86, 419478 (2014)

    Google Scholar 

  7. Wiseman, H.: Death by experiment for local realism. Nature 526, 687 (2015)

    Article  Google Scholar 

  8. Clauser, J.F., Horne, M.: Experimental consequences of objective local theories. Phys. Rev. D 10, 526–535 (1974)

    Article  ADS  Google Scholar 

  9. Eberhard, P.H.: Background level and counter efficiencies required for a loophole-free Einstein-Podolsky-Rosen experiment. Phys. Rev. A 47, R747–R749 (1993)

    Article  ADS  Google Scholar 

  10. Milonni, P.W.: The Quantum Vacuum. An Introduction to Quantum Electrodynamics. Academic Press, San Diego (1994)

    Book  Google Scholar 

  11. de la Peña, L., Cetto, A.M.: The Quantum Dice. An Introduction to Stochastic Electrodynamics. Kluwer Academic Publishers, Dordrecht (1996)

    Google Scholar 

  12. Lamb, W.: The Interpretation of Quantum Mechanics. Rinton Press, Princeton (2001)

    MATH  Google Scholar 

  13. Casimir, H.B.G.: On the attraction between two perfectly conducting plates. Proc. K. Ned. Acad. Wet. 51, 793 (1948)

    MATH  Google Scholar 

  14. Peebles, P.J.E., Ratra, B.: The cosmological constant and dark energy. Rev. Mod. Phys. 75, 559–606 (2003)

    Article  ADS  MathSciNet  Google Scholar 

  15. Weinberg, S.: The cosmological constant problem. Rev. Mod. Phys. 61, 1–23 (1989)

    Article  ADS  MathSciNet  Google Scholar 

  16. Santos, E.: Dark energy as a curvature of space-time induced by quantum vacuum fluctuations. Astrophys. Space Sci. 332, 423–435 (2011)

    Article  ADS  Google Scholar 

  17. Sakurai, J.J.: Advanced Quantum Mechanics. Addison Wesley, Reading (1967)

    Google Scholar 

  18. Santos, E.: Dark matter as an effect of the quantum vacuum. Astrophys. Space Sci. 363, 74 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  19. Casado, A., Marshall, T.W., Santos, E.: Parametric downconversion experiments in the Wigner representation. J. Opt. Soc. Am. B 14, 494–502 (1997)

    Article  ADS  Google Scholar 

  20. Menzel, R., Heuer, P.A., Milonni, P.W.: Entanglement, complementarity, and vacuum fields in spontaneous parametric down-conversion. Atoms 7, 27 (2019)

    Article  ADS  Google Scholar 

  21. Weyl, H.: Z. Phys. 46, 1 (1927). Weyl, H.: The Theory of Groups and Quantum Mechanics. Dover, New York (1931) (German original, 1928)

  22. Wigner, E.P.: On the quantum correction for thermodynamic equilibrium. Phys. Rev. 40, 749 (1932)

    Article  ADS  Google Scholar 

  23. Zachos, C.K., Fairlie, D.B., Curtright, T.L.: Quantum Mechanics in Phase Space. World Scientic, Singapore (2005)

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Emilio Santos.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Santos, E. Local Model of Entangled Photon Experiments Compatible with Quantum Predictions Based on the Reality of the Vacuum Fields. Found Phys 50, 1587–1607 (2020). https://doi.org/10.1007/s10701-020-00395-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10701-020-00395-9

Keywords

Navigation