Skip to main content
Log in

Effect of Viscous Friction Reduction by Blocking Dissipation

  • Published:
Fluid Dynamics Aims and scope Submit manuscript

Abstract—

The steady-state Couette flow between two plane-parallel plates of finite thickness is considered. Fluids with the viscosity that decreases with increase in the temperature are considered. It is shown that the isothermality condition across the plates can be violated in the practically important case of small distances between the plates. This leads to the possibility of using dissipation to heat the fluid and, as a result, to significant reduction in friction without additional energy supply.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

REFERENCES

  1. Choi, K.-S., European drag-reduction research—recent developments and current status, Fluid Dynamics Research, 2000, vol. 26, no. 5, pp. 325–335.

    Article  ADS  Google Scholar 

  2. Bushnell, D.M., Aircraft drag reduction—a review, Proc. Inst. Mech. Eng., 2003, vol. 217, no. 1, pp. 1–18.

    Article  Google Scholar 

  3. Ashill, P.R., Fulker, J.L., and Hackett, K.C., A review of recent developments in flow control, The Aeronautical J., 2005, vol. 109, no. 1095, pp. 205–232.

    Article  Google Scholar 

  4. Kornilov, V.I., Problems of turbulent friction reduction using active and passive methods (a review), Teplofizika i aeromekhanika, 2005, vol. 12, no. 2, pp. 183–208.

  5. Brutyan, M.A.,Zadachi upravleniya techeniem zhidkosti i gaza (Problems of Liquid and Gas Flow Control), Moscow, Nauka, 2015.

    Google Scholar 

  6. Beck, N., Landa, T., Seitz, A., Boermans, L., Liu, Y., and Radespiel, R., Drag reduction by laminar flow control, Energies, 2018, vol. 11, no. 1, p. 252.

    Article  Google Scholar 

  7. Corke, T.C. and Thomas, F.O., Active and passive turbulent boundary-layer drag reduction, AIAA J., 2018, vol. 56, no. 10, pp. 3835–3847.

    Article  ADS  Google Scholar 

  8. Frohnapfel, B., Flow control of near-wall turbulence, PhD Thesis, Aachen: University of Erlangen–Nuremberg, Shaker Verlag, 2007.

  9. Frohnapfel, B., Jovanovic, J., and Delgado, A., Experimental investigation of turbulent drag reduction by surface-embedded grooves, J. Fluid Mech., 2007, vol. 590, pp. 107–116.

    Article  ADS  Google Scholar 

  10. Frohnapfel, B., Hasegawa, Y., and Quadrio M., Money versus time: evaluation of flow control in terms of energy consumption and convenience, J. Fluid Mech., 2012, vol. 700, pp. 406–418.

    Article  ADS  Google Scholar 

  11. Marusic, I., Joseph, D.D., and Mahesh, K., Laminar and turbulent comparisons for channel flow and flow control, J. Fluid Mech., 2007, vol. 570, pp. 467–477.

    Article  ADS  MathSciNet  Google Scholar 

  12. Fukagata, K., Sugiyama, K., and Kasagi, N., On the lower bound of net driving power in controlled duct flows, Physica D: Nonlinear Phenomena, 2009, vol. 238, no. 13. pp. 1082–1086.

    Article  ADS  MathSciNet  Google Scholar 

  13. Daschiel, G., Strategies to reduce friction losses and their implications for the energy efficient design of internal flow domains, PhD Thesis, Karlsruhe: Karlsruhe Institute of Technology, KIT Scientific Publ., 2014.

  14. Yershin, Sh.A., Paradoxes in Aerohydrodynamics, Cham.: Springer International Publishing AG, 2017, р. 375.

    Book  Google Scholar 

  15. Kaganov, S.A., Fluid flow between rotating coaxial cylinders with regard to the friction heat and the temperature dependence of viscosity, Inzn.-Fiz. Zh., 1965, vol. 8, no. 1, pp. 307–310.

    Google Scholar 

  16. Abramov, A.A. and Butkovskii, A.V., The extended Reynolds analogy for the Couette problem: similarity parameters, Int. J. Heat Mass Transfer, 2018, vol. 117, pp. 313–318.

    Article  Google Scholar 

  17. Shepelev, V.A. and Shepelev, A.V., www.highexpert.ru/content/liquids/oil.html

  18. Shepelev, V.A. and Shepelev, A.V., www.highexpert.ru/content/liquids/water.html

  19. Landau, L.D. and Lifshitz, E.M., Theoretical Physics, vol. 6. Fluid Mechanics. New York: Pergamon, 2013.

    Google Scholar 

Download references

Funding

The work was carried out with support from the Russian Science Foundation under the grant no. 16-19-10407.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to A. A. Abramov, F. A. Abramov, A. V. Butkovskii or S. L. Chernyshev.

Additional information

Translated by E.A. Pushkar

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abramov, A.A., Abramov, F.A., Butkovskii, A.V. et al. Effect of Viscous Friction Reduction by Blocking Dissipation. Fluid Dyn 55, 743–750 (2020). https://doi.org/10.1134/S0015462820060014

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0015462820060014

Keywords:

Navigation