Skip to main content
Log in

Validation Strategy of Reduced-Order Two-Fluid Flow Models Based on a Hierarchy of Direct Numerical Simulations

  • Published:
Flow, Turbulence and Combustion Aims and scope Submit manuscript

Abstract

Whereas direct numerical simulation (DNS) have reached a high level of description in the field of atomization processes, they are not yet able to cope with industrial needs since they lack resolution and are too costly. Predictive simulations relying on reduced order modeling have become mandatory for applications ranging from cryotechnic to aeronautic combustion chamber liquid injection. Two-fluid models provide a good basis in order to conduct such simulations, even if recent advances allow to refine subscale modeling using geometrical variables in order to reach a unified model including separate phases and disperse phase descriptions based on high order moment methods. The simulation of such models has to rely on dedicated numerical methods and still lacks assessment of its predictive capabilities. The present paper constitutes a building block of the investigation of a hierarchy of test-cases designed to be amenable to DNS while close enough to industrial configurations, for which we propose a comparison of two-fluid compressible simulations with DNS data-bases. We focus in the present contribution on an air-assisted water atomization using a planar liquid sheet injector. Qualitative and quantitative comparisons with incompressible DNS allow us to identify and analyze strength and weaknesses of the reduced-order modeling and numerical approach in this specific configuration and set a framework for more refined models since they already provide a very interesting level of comparison on averaged quantities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

Notes

  1. Since the signification of diffuse interface models vary in the scientific community, DIM refer in the present paper to any averaged model which allows locally the presence of each phase. These models can be obtained by a statistical averaging process for instance (Cordesse 2020).

References

  • Ambroso, A., Chalons, C., Raviart, P.-A.: A Godunov-type method for the seven-equation model of compressible two-phase flow. Comput. Fluids 54, 67–91 (2012)

    MathSciNet  MATH  Google Scholar 

  • Andrianov, N., Warnecke, G.: The Riemann problem for the Baer–Nunziato two-phase flow model. J. Comput. Phys. 195(2), 434–464 (2004)

    MathSciNet  MATH  Google Scholar 

  • Anez, J., Ahmed, A., Hecht, N., Duret, B., Reveillon, J., Demoulin, F.: Eulerian–Lagrangian spray atomization model coupled with interface capturing method for diesel injectors. Int. J. Multiphase Flow 113, 325–342 (2019)

    MathSciNet  Google Scholar 

  • Baer, M.R., Nunziato, J.W.: A two-phase mixture theory for the deflagration-to-detonation transition (DDT) in reactive granular materials. Int. J. Multiphase Flow 12(6), 861–889 (1986)

    MATH  Google Scholar 

  • Belhadef, A., Vallet, A., Amielh, M., Anselmet, F.: Pressure-swirl atomization: modeling and experimental approaches. Int. J. Multiphase Flow 39, 13–20 (2012)

    Google Scholar 

  • Canu, R., Duret, B., Reveillon, J., Demoulin, F.-X.: Curvature-based interface resolution quality (IRQ) indicator to assess simulation accuracy. Atomization and Sprays 30(1), 31–53 (2020)

  • Canu, R., Puggelli, S., Essadki, M., Duret, B., Ménard, T., Massot, M., Reveillon, J., Demoulin, F.: Where does the droplet size distribution come from? Int. J. Multiphase Flow 107, 230–245 (2018)

    Google Scholar 

  • Carvalho, I., Heitor, M., Santos, D.: Liquid film disintegration regimes and proposed correlations. Int. J. Multiphase Flow 28(5), 773–789 (2002)

    MATH  Google Scholar 

  • Coquel, F., Hérard, J.-M., Saleh, K., Seguin, N.: A robust entropy-satisfying finite volume scheme for the isentropic Baer–Nunziato model. ESAIM: Math. Model. Numer. Anal. (2014)

  • Coquel, F., Gallouet, T., Hérard, J.-M., Seguin, N.: Closure laws for a two-fluid two-pressure model. C.R. Math. 334(10), 927–932 (2002)

    MathSciNet  MATH  Google Scholar 

  • Coquel, F., Hérard, J.-M., Saleh, K.: A positive and entropy-satisfying finite volume scheme for the Baer–Nunziato model. J. Comput. Phys. 330, 401–435 (2017)

    MathSciNet  MATH  Google Scholar 

  • Cordesse, P., Di Battista, R., Drui, F., Kokh, S., and Massot, M.: Derivation of a two-phase flow model with two-scale kinematics, geometric variables and surface tension using variational calculus. In: NASA Summer Program Proceedings. Nasa Technical Memorandum. NASA Ames Research Center, pp. 1–12 (2020)

  • Cordesse, P., Matuszewski, L., Massot, M.: Multi-fluid thermodynamics from a pressure law approach. Continuum Mech. Therm. (2020)

  • Cordesse, P., Murrone, A., Menard, T., and Massot, M.: Comparative study of jet atomization simulations: direct numerical simulations and diffuse interface models coupled with kinetic-based moment methods. In: NASA Summer Program Proceedings. Nasa Technical Memorandum. NASA Ames Research Center, pp. 1–12 (2020)

  • Cordesse, P.: Contribution to the study of combustion instabilities in cryotechnic rocket engines: coupling diffuse interface models with kinetic-based moment methods for primary atomization simulations. PhD thesis, Paris-Saclay University - École polytechnique (2020)

  • Cordesse, P. and Massot, M.: Entropy supplementary conservation law for non-linear systems of PDEs with non-conservative terms: application to the modelling and analysis of complex fluid flows using computer algebra. In Press, Commun. Math. Sci. (2020) https://hal.archives-ouvertes.fr/hal-01978949

  • Deledicque, V., Papalexandris, M.V.: An exact Riemann solver for compressible two-phase flow models containing non-conservative products. J. Comput. Phys. 222(1), 217–245 (2007)

  • Demoulin, F.-X., Reveillon, J., Duret, B., Bouali, Z., Desjonqueres, P., Menard, T.: Toward using direct numerical simulation to improve primary break-up modeling. atomization sprays 23(11), 957–980 (2013)

  • Drui, F., Larat, A., Kokh, S., Massot, M.: Small-scale kinematics of two-phase flows: identifying relaxation processes in separated and disperse-phase flow models. J. Fluid Mech. 876, 326–355 (2019)

    MathSciNet  MATH  Google Scholar 

  • Dumouchel, C.: On the experimental investigation on primary atomization of liquid streams. Exp. Fluids 45, 371–422 (2008)

    Google Scholar 

  • Duret, B., Luret, G., Reveillon, J., Ménard, T., Berlemont, A., Demoulin, F.: DNS analysis of turbulent mixing in two-phase flows. Int. J. Multiphase Flow 40, 93–105 (2012)

    Google Scholar 

  • Embid, P., Baer, M.: Mathematical analysis of a two-phase continuum mixture theory. Cont. Mech. Therm. 4(4), 279–312 (1992)

    MathSciNet  MATH  Google Scholar 

  • Essadki, M., de Chaisemartin, S., Laurent, F., Massot, M.: High order moment model for polydisperse evaporating sprays towards interfacial geometry. SIAM J. Appl. Math. 78(4), 2003–2027 (2018)

    MathSciNet  MATH  Google Scholar 

  • Essadki, M., Drui, F., de Chaisemartin, S., Larat, A., Ménard, T., Massot, M.: Statistical modeling of the gas–liquid interface using geometrical variables: toward a unified description of the disperse and separated phase flows. Int. J. Multiphase Flow 120, 204–216 (2019)

    MathSciNet  Google Scholar 

  • Fedkiw, R.P., Aslam, T., Merriman, B., Osher, S.: A Non-oscillatory Eulerian approach to interfaces in multimaterial flows (the ghost fluid method). J. Comput. Phys. 152(2), 457–492 (1999)

    MathSciNet  MATH  Google Scholar 

  • Furfaro, D., Saurel, R.: A simple HLLC-type Riemann solver for compressible non-equilibrium two-phase flows. Comput. Fluids 111, 159–178 (2015)

    MathSciNet  MATH  Google Scholar 

  • Gaillard, P., Le Touze, C., Matuszewski, L., Murrone, A.: Numerical simulation of cryogenic injection in rocket engine combustion chambers. AerospaceLab 11, 16 (2016)

    Google Scholar 

  • Gallouet, T., Héard, J.-M., Seguin, N.: Numerical modeling of two-phase flows using the two-fluid two-pressure approach. Math. Models Methods Appl. Sci. 14(05), 663–700 (2004)

    MathSciNet  MATH  Google Scholar 

  • Godunov, S.K.: An interesting class of quasilinear systems. Soviet Math. Dokl. 2(3), 947–949 (1961)

    MATH  Google Scholar 

  • Herrmann, M.: A Dual-Scale LES Subgrid Model for Turbulent Liquid/Gas Phase Interface Dynamics, vol. 1. ASME Symposia (2015)

  • ICAO, Environmental Report. Technical report (2019)

  • Kang, M., Fedkiw, R.P., Liu, X.-D.: A boundary condition capturing method for multiphase incompressible flow. J. Sci. Comput. 153, 323–360 (2000)

  • Kapila, A.K., Menikoff, R., Bdzil, J.B., Son, S.F., Stewart, D.S.: Two-phase modeling of deflagration-to-detonation transition in granular materials: reduced equations. Phys. Fluids 13(10), 3002–3024 (2001)

    MATH  Google Scholar 

  • Lasheras, J.C., Villermaux, E., Hopfinger, E.J.: Break-up and atomization of a round water jet by a high-speed annular air jet. J. Fluid Mech. 357, 351–379 (1998)

    Google Scholar 

  • Le Touze, C.: Coupling between separated and dispersed two-phase flow models for the simulation of primary atomization in cryogenic combustion. PhD Thesis, Université Nice Sophia Antipolis (2015)

  • Le Touze, C., Murrone, A., Guillard, H.: Multislope MUSCL method for general unstructured meshes. J. Comput. Phys. 284, 389–418 (2014)

    MathSciNet  MATH  Google Scholar 

  • Leroux, B., Delabroy, O., Lacas, F.: Experimental study of coaxial atomizers scaling. Part I: dense core zone. Atom. Sprays 17(5), 381–407 (2007)

    Google Scholar 

  • Lozano, A., Barreras, F., Hauke, G., Dopazo, C.: Longitudinal instabilities in an air-blasted liquid sheet. J. Fluid Mech. 437, 143–173 (2001)

    MATH  Google Scholar 

  • Ménar, T., Tanguy, S., Berlemont, A.: Coupling level set/VOF/ghost fluid methods: validation and application to 3D simulation of the primary break-up of a liquid jet. Int. J. Multiphase Flow 33(5), 510–524 (2007)

    Google Scholar 

  • Mock, M.: Systems of conservation laws of mixed type. J. Differ. Equ. 37(1), 70–88 (1980)

    MathSciNet  MATH  Google Scholar 

  • Murrone, A., Boucher, A., and Cordesse, P.: A five equation model for the simulation of the two-phase flow in cryogenic coaxial injector. Space Propulsion 2018 Proceedings, Seville, Spain (2018)

  • Pelanti, M., Shyue, K.-M.: A mixture-energy-consistent six-equation two-phase numerical model for fluids with interfaces, cavitation and evaporation waves. J. Comput. Phys. 259, 331–357 (2014)

    MathSciNet  MATH  Google Scholar 

  • Poinsot, T., Lelef, S.: Boundary conditions for direct simulations of compressible viscous flows. J. Comput. Phys. 101(1), 104–129 (1992)

    MathSciNet  MATH  Google Scholar 

  • Porcheron, E., Carreau, J.-L., Visage, D.L., Roger, F.: Effect of injection gas density on coaxial liquid jet atomization. Atom. Sprays 12(1–3), 209–227 (2002)

    Google Scholar 

  • Puckett, E.G., Almgren, A.S., Bell, J.B., Marcus, D.L., Rider, W.J.: A high-order projection method for tracking fluid interfaces in variable density incompressible flows. J. Comput. Phys. 130(2), 269–282 (1997)

  • Rudman, M.: A volume-tracking method for incompressible multifluid flows with large density variations. Int. J. Numer. Methods Fluids 28(2), 357–378 (1998)

    MATH  Google Scholar 

  • Sainsaulieu, L.: Finite Volume Approximation of Two Phase-Fluid Flows Based on an Approximate Roe-type Riemann solver. J. Comput. Phys. 121(1), 1–28 (1995)

    MathSciNet  MATH  Google Scholar 

  • Saurel, R., Abgrall, R.: A multiphase Godunov method for compressible multifluid and multiphase flows. J. Comput. Phys. 150(2), 435–467 (1999)

  • Saurel, R., Gavrilyuk, S., Renaud, F.: A multiphase model with internal degrees of freedom: application to shock–bubble interaction. J. Fluid Mech. 495, 283–321 (2003)

    MathSciNet  MATH  Google Scholar 

  • Saurel, R., Petitpas, F., Berry, R.A.: Simple and efficient relaxation methods for interfaces separating compressible fluids, cavitating flows and shocks in multiphase mixtures. J. Comput. Phys. 228, 1678–1712 (2009)

    MathSciNet  MATH  Google Scholar 

  • Schlichting, H.: Boundary - Layer Theory. McGraw-Hill, London (1979)

  • Schwendeman, D., Wahle, C., Kapila, A.: The Riemann problem and a high-resolution Godunov method for a model of compressible two-phase flow. J. Comput. Phys. 212(2), 490–526 (2006)

    MathSciNet  MATH  Google Scholar 

  • Shinjo, J., Umemura, A.: Simulation of liquid jet primary breakup: dynamics of ligament and droplet formation. Int. J. Multiphase Flow 36(7), 513–532 (2010)

    Google Scholar 

  • Sibra, A., Dupays, J., Murrone, A., Laurent, F., Massot, M.: Simulation of reactive polydisperse sprays strongly coupled to unsteady flows in solid rocket motors: efficient strategy using Eulerian multi-fluid methods. J. Comput. Phys. 339, 210–246 (2017)

    MathSciNet  MATH  Google Scholar 

  • Stapper, B. and Samuelsen, G.: An experimental study of the breakup of a two-dimensional liquid sheet in the presence of co-flow air shear. In: 28th Aerospace Sciences Meeting (1990)

  • Sussman, M., Smereka, P., Osher, S.: A level set approach for computing solutions to incompressible two-phase flow. J. Comput. Phys. 114(1), 146–159 (1994)

    MATH  Google Scholar 

  • Sussman, M., Fatemi, E., Smereka, P., Osher, S.: An improved level set method for incompressible two-phase flows. Comput. Fluids 27(5), 663–680 (1998)

    MATH  Google Scholar 

  • Sussman, M., Smith, K., Hussaini, M., Ohta, M., Zhi-Wei, R.: A sharp interface method for incompressible two-phase flows. J. Comput. Phys. 221(2), 469–505 (2007)

    MathSciNet  MATH  Google Scholar 

  • Tanguy, S., Ménard, T., Berlemont, A.: A level set method for vaporizing two-phase flows. J. Comput. Phys. 221(2), 837–853 (2007)

    MathSciNet  MATH  Google Scholar 

  • Vaudor, G., Ménard, T., Aniszewski, W., Doring, M., Berlemont, A.: A consistent mass and momentum flux computation method for two phase flows. Application to atomization process. Comput. Fluids 152 (2017)

  • Zein, A., Hantke, M., Warnecke, G.: Modeling phase transition for compressible two-phase flows applied to metastable liquids. J. Comput. Phys. 229(8), 2964–2998 (2010)

    MathSciNet  MATH  Google Scholar 

  • Zhang, J.: Acceleration of five-point red–black Gauss–Seidel in multigrid for Poisson equation. Appl. Math. Comput. 80(1), 73–93 (1996)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The support of the French Government Space Agency (CNES) and the French Aerospace Lab (ONERA) with the help of L.H. Dorey (ONERA) and M. Théron (CNES) are gratefully acknowledged. Simulations have been successfully conducted using the CEDRE computational fluid dynamics software on the ONERA cluster. Regarding ARCHER computations, this work was granted access to the HPC resources of IDRIS, TGCC and CINES under the allocation A0052B10101 and A0072B10101 attributed by GENCI (Grand Equipement National de Calcul Intensif) and resources of CRIANN (Project number 2006011). We would like to thank Julien Réveillon for his help and numerous and fruitful discussions. The help of H. Deneuville and P. Tomov from SAFRAN Aircraft Engines (SAE) is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pierre Cordesse.

Ethics declarations

Conflict of interest

This work has been partially funded by the French Government Space Agency (CNES) and the French Aerospace Lab (ONERA) through a PhD grant for P. Cordesse, and by SAFRAN Aircraft Engines (SAE) through a PhD grant for A. Remigi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cordesse, P., Remigi, A., Duret, B. et al. Validation Strategy of Reduced-Order Two-Fluid Flow Models Based on a Hierarchy of Direct Numerical Simulations. Flow Turbulence Combust 105, 1381–1411 (2020). https://doi.org/10.1007/s10494-020-00154-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10494-020-00154-w

Keywords

Navigation