Skip to main content

Advertisement

Log in

Montane Meadows: A Soil Carbon Sink or Source?

  • Published:
Ecosystems Aims and scope Submit manuscript

Abstract

As the largest biogeochemically active terrestrial reserve of carbon (C), soils have the potential to either mitigate or amplify rates of climate change. Ecosystems with large C stocks and high rates of soil C sequestration, in particular, may have outsized impacts on regional and global C cycles. Montane meadows have large soil C stocks relative to surrounding ecosystems. However, anthropogenic disturbances in many meadows may have altered the balance of C inputs and outputs, potentially converting these soils from net C sinks to net sources of C to the atmosphere. Here, we quantified ecosystem-level C inputs and outputs to estimate the annual net soil C flux from 13 montane meadows spanning a range of conditions throughout the California Sierra Nevada. Our results suggest that meadow soils can be either large net C sinks (577.6 ± 250.5 g C m−2 y−1) or sources of C to the atmosphere (− 391.6 ± 154.2 g C m−2 y−1). Variation in the direction and magnitude of net soil C flux appears to be driven by belowground C inputs. Vegetation species and functional group composition were not associated with the direction of net C flux, but climate and watershed characteristics were. Our results demonstrate that, per unit area, montane meadows hold a greater potential for C sequestration than the surrounding forest. However, legacies of disturbance have converted some meadows to strong net C sources. Accurate quantification of ecosystem-level C fluxes is critical for the development of regional C budgets and achieving global emissions goals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

Data Accessibility

Data are available online at https://doi.org/10.5061/dryad.qbzkh18g6. Data sets include: soil C stocks, annual GHG budgets, 13C pulse-labeling results, vegetation biomass and species composition, annual net soil carbon flux calculations, and sensitivity analysis. All other data are available from the corresponding author upon reasonable request.

References

  • Abatzoglou JT, Dobrowski SZ, Parks SA, Hegewisch KC. 2018. Terraclimate, a high-resolution global dataset of monthly climate and climatic water balance from 1958–2015. Sci Data 5:170191.

    Article  PubMed  PubMed Central  Google Scholar 

  • Achtnich C, Bak F, Conrad R. 1995. Competition for electron donors among nitrate reducers, ferric iron reducers, sulfate reducers, and methanogens in anoxic paddy soil. Biol Fertil Soils 19:65–72.

    Article  CAS  Google Scholar 

  • Allen-Diaz BH. 1991. Water table and plant species relationships in Sierra Nevada meadows. Am Midl Nat 126:30–43.

    Article  Google Scholar 

  • Barbosa AM, Brown JA, Jimenez-Valverde A, Real R. 2016. modEvA: model evaluation and analysis.

  • Bosch JM, Hewlett JD. 1982. A review of catchment experiments to determine the effect of vegetation changes on water yield and evapotranspiration. J Hydrol 55:3–23.

    Article  Google Scholar 

  • Breshears DD, Allen CD. 2002. The importance of rapid, disturbance-induced losses in carbon management and sequestration. Glob Ecol Biogeogr 11:1–5.

    Article  Google Scholar 

  • Bridgham SD, Megonigal JP, Keller JK, Bliss NB, Trettin C. 2006. The carbon balance of North American wetlands. Wetlands 26:889–916.

    Article  Google Scholar 

  • Campbell J, Alberti G, Martin J, Law BE. 2009. Carbon dynamics of a ponderosa pine plantation following a thinning treatment in the northern Sierra Nevada. For Ecol Manag 257:453–63.

    Article  Google Scholar 

  • Chambers JC, Miller JR, Eds. 2011. Geomorphology, hydrology, and ecology of Great Basin meadow complexes—implications for management and restoration. Fort Collins, CO: U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station.

  • Chapin FS, Woodwell GM, Randerson JT, Rastetter EB, Lovett GM, Baldocchi DD, Clark DA, Harmon ME, Schimel DS, Valentini R, Wirth C, Aber JD, Cole JJ, Goulden ML, Harden JW, Heimann M, Howarth RW, Matson PA, Mcguire AD, Melillo JM, Mooney HA, Neff JC, Houghton RA, Pace ML, Ryan MG, Running SW, Sala OE, Schlesinger WH, Schulze E-D. 2006. Reconciling carbon-cycle concepts, terminology, and methods. Ecosystems 9:1041–50.

    Article  CAS  Google Scholar 

  • Chivers MR, Turetsky MR, Waddington JM, Harden JW. 2009. Effects of experimental water table and temperature manipulations on ecosystem CO2 fluxes in an Alaskan Rich Ren. Ecosystems 12:1329–42.

    Article  CAS  Google Scholar 

  • Delaune RD, Pezeshki SR. 2003. The role of soil organic carbon in maintaining surface elevation in rapidly subsiding U.S. Gulf of Mexico costal marshes. Water Air Soil Pollut 3:167–79.

    Article  CAS  Google Scholar 

  • Deverel SJ, Rojstaczer S. 1996. Subsidence of agricultural lands in the Sacramento-San Joaquin Delta, California: role of aqueous and gaseous carbon fluxes. Water Resour Res 32:2359–67.

    Article  CAS  Google Scholar 

  • De Deyn GB, Cornelissen JHC, Bardgett RD. 2008. Plant functional traits and soil carbon sequestration in contrasting biomes. Ecol Lett 11:1–16.

    Article  Google Scholar 

  • Doetterl S, Stevens A, Six J, Merckx R, Van Oost K, Pinto MC, Casanova-Katny A, Muñoz C, Boudin M, Venegas EZ, Boeckx P. 2015. Soil carbon storage controlled by interactions between geochemistry and climate. Nat Geosci 8:780–3.

    Article  CAS  Google Scholar 

  • Fahey T, Bledsoe CS, Day F, Reuss R, Smucker AJ. 1999. Fine root production and demography. In: Robertson GP, Bledsoe CS, Coleman DC, Sollins P, Eds. Standard soil methods for long-term ecological research. New York: Oxford University Press. p 437–55.

    Google Scholar 

  • Freeman C, Ostle N, Kang H. 2001. An enzymic ‘latch’ on a global carbon store. Nature 409:149–50.

    Article  CAS  PubMed  Google Scholar 

  • Galik CS, Jackson RB. 2009. Risks to forest carbon offset projects in a changing climate. For Ecol Manag 257:2209–16.

    Article  Google Scholar 

  • Gavazov K, Ingrisch J, Hasibeder R, Mills RTE, Buttler A, Gleixner G, Pumpanen J, Bahn M. 2017. Winter ecology of a subalpine grassland: effects of snow removal on soil respiration, microbial structure and function. Sci Tot Environ 590–591:316–24.

    Article  CAS  Google Scholar 

  • Giardina CP, Ryan MG. 2002. Total belowground carbon allocation in a fast-growing Eucalyptus plantation estimated using a carbon balance approach. Ecosystems 5:487–99.

    Article  CAS  Google Scholar 

  • Goodwin P, Katavouta A, Roussenov VM, Foster GL, Rohling EJ, Williams RG. 2018. Pathways to 1.5 °C and 2 °C warming based on observational and geological constraints. Nat Geosci 11:102–7.

    Article  CAS  Google Scholar 

  • Hafner S, Unteregelsbacher S, Seeber E, Lena B, Xu X, Li X, Guggenberger G, Miehe G, Kuzyakov Y. 2012. Effect of grazing on carbon stocks and assimilate partitioning in a Tibetan montane pasture revealed by 13CO2 pulse labeling. Glob Change Biol 18:528–38.

    Article  Google Scholar 

  • Hart SC, DiSalvo AC. 2005. Net primary productivity of a Western Montane Riparian Forest: potential influence of stream flow diversion. Madroño 52:79–90.

    Article  Google Scholar 

  • Hemes KS, Chamberlain SD, Eichelmann E, Anthony T, Valach A, Kasak K, Szutu D, Verfaillie J, Silver WL, Baldocchi DD. 2019. Assessing the carbon and climate benefit of restoring degraded agricultural peat soils to managed wetlands. Agric For Meteorol 268:202–14.

    Article  Google Scholar 

  • Homer C et al. 2015. Completion of the 2011 National Land Cover Database for the conterminous United States—representing a decade of land cover change information. Photogramm Eng Remote Sensing 81:345–54.

    Google Scholar 

  • Hooijer A, Page S, Canadell JG, Silvius M, Kwadijk J, Wösten H, Jauhiainen J. 2010. Current and future CO2 emissions from drained peatlands in Southeast Asia. Biogeosciences 7:1505–14.

    Article  CAS  Google Scholar 

  • Hooijer A, Silvius M, Wosten H, Page S. 2006. PEAT-CO2: Assessment of CO2 emissions from drained peatlands in SE Asia. Delft Hydraulics report Q3943.

  • Hudiburg TW, Law BE, Wirth C, Luyssaert S. 2011. Regional carbon dioxide implications of forest bioenergy production. Nat Clim Change 1:419–23.

    Article  CAS  Google Scholar 

  • Hunsaker C, Swanson S, McMahon A, Viers J, Hill B. 2015. Effects of meadow erosion and restoration on groundwater storage and baseflow in national forests in the Sierra Nevada, California. USDA For Serv. pp 1–59.

  • Jobbagy EG, Jackson RB. 2000. The vertical distribution of soil organic carbon and its relation to climate and vegetation. Ecol Appl 10:423–36.

    Article  Google Scholar 

  • Jones DL, Nguyen C, Finlay RD. 2009. Carbon flow in the rhizosphere: carbon trading at the soil–root interface. Plant Soil 321:5–33.

    Article  CAS  Google Scholar 

  • Kallenbach CM, Frey SD, Grandy AS. 2016. Direct evidence for microbial-derived soil organic matter formation and its ecophysiological controls. Nat Commun 7:1–10.

    Article  CAS  Google Scholar 

  • Kardol P, Wardle DA. 2010. How understanding aboveground–belowground linkages can assist restoration ecology. Trends Ecol Evol 25:670–9.

    Article  PubMed  Google Scholar 

  • Kayranli B, Scholz M, Mustafa A, Hedmark Å. 2010. Carbon storage and fluxes within freshwater wetlands: a critical review. Wetlands 30:111–24.

    Article  Google Scholar 

  • Köchy M, Hiederer R, Freibauer A. 2015. Global distribution of soil organic carbon—part 1: masses and frequency distributions of SOC stocks for the tropics, permafrost regions, wetlands, and the world. Soil 1:351–65.

    Article  CAS  Google Scholar 

  • van de Koppel J, Rietkerk M, Weissing FJ. 1997. Catastrophic vegetation shifts and soil degradation in terrestrial grazing systems. Trends Ecol Evol 12:352–6.

    Article  PubMed  Google Scholar 

  • Laiho R. 2006. Decomposition in peatlands: reconciling seemingly contrasting results on the impacts of lowered water levels. Soil Biol Biochem 38:2011–24.

    Article  CAS  Google Scholar 

  • Li W, Wu J, Bai E, Jin C, Wang A, Yuan F, Guan D. 2016. Response of terrestrial carbon dynamics to snow cover change: a meta-analysis of experimental manipulation (II). Soil Biol Biochem 103:388–93.

    Article  CAS  Google Scholar 

  • Liang C, Schimel JP, Jastrow JD. 2017. The importance of anabolism in microbial control over soil carbon storage. Nat Microbiol 2:1–6.

    Article  CAS  Google Scholar 

  • Limpens J, Berendse F, Blodau C, Canadell JG, Freeman C, Holden J, Roulet NT, Rydin H, Schaepman-Strub G. 2008. Peatlands and the carbon cycle: from local processes to global implications—a synthesis. Biogeosciences 5:1475–91.

    Article  CAS  Google Scholar 

  • Lindig-Cisneros R, Desmond J, Boyer KE, Zedler JB. 2003. Wetland restoration thresholds: can a degradation transition be reversed with increased effort? Ecol Appl 13:193–205.

    Article  Google Scholar 

  • Liptzin D, Williams MW, Helmig D, Seok B, Filippa G, Chowanski K, Hueber J. 2009. Process-level controls on CO2 fluxes from a seasonally snow-covered subalpine meadow soil, Niwot Ridge, Colorado. Biogeochemistry 95:151–66.

    Article  CAS  Google Scholar 

  • Luyssaert S, Inglima I, Jung M, Richardson AD, Reichstein M, Papale D, Piao SL, Schulze ED, Wingate L, Matteucci G, Aragao L, Aubinet M, Beer C, Bernhofer C, Black KG, Bonal D, Bonnefond JM, Chambers J, Ciais P, Cook B, Davis KJ, Dolman AJ, Gielen B, Goulden M, Grace J, Granier A, Grelle A, Griffis T, Grünwald T, Guidolotti G, Hanson PJ, Harding R, Hollinger DY, Hutyra LR, Kolari P, Kruijt B, Kutsch W, Lagergren F, Laurila T, Law BE, Le Maire G, Lindroth A, Loustau D, Malhi Y, Mateus J, Migliavacca M, Misson L, Montagnani L, Moncrieff J, Moors E, Munger JW, Nikinmaa E, Ollinger SV, Pita G, Rebmann C, Roupsard O, Saigusa N, Sanz MJ, Seufert G, Sierra C, Smith ML, Tang J, Valentini R, Vesala T, Janssens IA. 2007. CO2 balance of boreal, temperate, and tropical forests derived from a global database. Glob Change Biol 13:2509–37.

    Article  Google Scholar 

  • Ma L, Yao Z, Zheng X, Zhang H, Wang K, Zhu B, Wang R, Zhang W, Liu C. 2018. Increasing grassland degradation stimulates the non-growing season CO2 emissions from an alpine meadow on the Qinghai-Tibetan Plateau. Environ Sci Pollut Res 25:26576–91.

    Article  CAS  Google Scholar 

  • McIlroy SK, Allen-Diaz BH. 2012. Plant community distribution along water table and grazing gradients in montane meadows of the Sierra Nevada Range (California, USA). Wetl Ecol Manag 20:287–96.

    Article  Google Scholar 

  • Merbold L, Rogiers N, Eugster W. 2012. Winter CO2 fluxes in a sub-alpine grassland in relation to snow cover, radiation and temperature. Biogeochemistry 111:287–302.

    Article  CAS  Google Scholar 

  • Millar DJ, Cooper DJ, Dwire KA, Hubbard RM, Von Fischer J. 2017. Mountain peatlands range from CO2 sinks at high elevations to sources at low elevations: implications for a changing climate. Ecosystems 20:416–32.

    Article  CAS  Google Scholar 

  • Minasny B, Malone BP, McBratney AB, Angers DA, Arrouays D, Chambers A, Chaplot V, Chen Z-S, Cheng K, Das BS, Field DJ, Gimona A, Hedley CB, Hong SY, Mandal B, Marchant BP, Martin M, McConkey BG, Mulder VL, O’Rourke S, Richer-de-Forges AC, Odeh I, Padarian J, Paustian K, Pan G, Poggio L, Savin I, Stolbovoy V, Stockmann U, Sulaeman Y, Tsui C-C, Vågen TG, van Wesemael B, Winowiecki L. 2017. Soil carbon 4 per mille. Geoderma 292:59–86.

    Article  Google Scholar 

  • Mitra S, Wassmann R, Vlek PLG. 2005. An appraisal of global wetland area and its organic carbon stock. Curr Sci 88:25–35.

    CAS  Google Scholar 

  • Mitsch WJ, Bernal B, Nahlik AM, Mander U, Zhang L, Anderson CJ, Jørgensen SE, Brix H. 2013. Wetlands, carbon, and climate change. Landsc Ecol 28:583–97.

    Article  Google Scholar 

  • Moore TR, Roulet NT. 1995. Methane emissions from Canadian peatlands. In: Lal R, Ed. Soils and global change. Boca Raton: Lewis Publishers. p 153–64.

    Google Scholar 

  • Mou XM, Li XG, Zhao N, Yu YW, Kuzyakov Y. 2018. Tibetan sedges sequester more carbon belowground than grasses: a 13C labeling study. Plant Soil 426:287–98.

    Article  CAS  Google Scholar 

  • Nahlik AM, Fennessy MS. 2016. Carbon storage in US wetlands. Nat Commun 7:13835.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • National Fish and Wildlife Foundation. 2010. Sierra Nevada meadow restoration business plan.

  • Newcomb CJ, Qafoku NP, Grate JW, Bailey VL, De Yoreo JJ. 2017. Developing a molecular picture of soil organic matter–mineral interactions by quantifying organo–mineral binding. Nat Commun 8:1–8.

    Article  CAS  Google Scholar 

  • Norton JB, Jungst LJ, Norton U, Olsen HR, Tate KW, Horwath WR. 2011. Soil carbon and nitrogen storage in Upper Montane Riparian Meadows. Ecosystems 14:1217–31.

    Article  CAS  Google Scholar 

  • Norton JB, Olsen HR, Jungst LJ, Legg DE, Horwath WR. 2014. Soil carbon and nitrogen storage in alluvial wet meadows of the Southern Sierra Nevada Mountains, USA. J Soils Sediments 14:34–43.

    Article  CAS  Google Scholar 

  • Nugent KA, Strachan IB, Strack M, Roulet NT, Rochefort L. 2018. Multi-year net ecosystem carbon balance of a restored peatland reveals a return to carbon sink. Glob Change Biol 24:5751–68.

    Article  Google Scholar 

  • Oksanen J, Blanchet FG, Friendly M, Kindt R, Legendre P, McGlinn D, Minchin PR, O’Hara RB, Simpson GL, Solymos P, Stevens MHH, Szoecs E, Wagner H. 2018. vegan: community ecology package. R package version 2.5-3.

  • Poirier V, Roumet C, Munson AD. 2018. The root of the matter: linking root traits and soil organic matter stabilization processes. Soil Biol Biochem 120:246–59.

    Article  CAS  Google Scholar 

  • Potter C. 2010. The carbon budget of California. Environ Sci Policy 13:373–83.

    Article  CAS  Google Scholar 

  • PRISM Climate Group. 2010. 30-Year Normals; 1981–2010. http://prism.oregonstate.edu.

  • R Core Team. 2017. R: A language and environment for statistical computing.

  • Rau BM, Melvin AM, Johnson DW, Goodale CL, Blank RR, Fredriksen G, Miller WW, Murphy JD, Todd DE, Walker RF. 2011. Revisiting soil carbon and nitrogen sampling: quantitative pits versus rotary cores. Soil Sci 176:273–9.

    Article  CAS  Google Scholar 

  • Reed CC, Winters JM, Hart SC, Hutchinson R, Chandler M, Venicx G, Sullivan BW. 2018. Building flux capacity: citizen scientists increase resolution of soil greenhouse gas fluxes. PLoS ONE 13:e0198997.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Saugier B, Roy J, Mooney HA. 2001. Estimations of global terrestrial productivity: converging towards a single number? In: Roy J, Saugier B, Mooney HA, Eds. Terrestrial global productivity. San Diego: Academic Press. p 543–58.

    Chapter  Google Scholar 

  • Scheffer M, Carpenter S, Foley JA, Folke C, Walker B. 2001. Catastrophic shifts in ecosystems. Nature 413:591–6.

    Article  CAS  PubMed  Google Scholar 

  • Sjögersten S, Black CR, Evers S, Hoyos-Santillan J, Wright EL, Turner BL. 2014. Tropical wetlands: a missing link in the global carbon cycle? Glob Biogeochem Cycles 28:1371–86.

    Article  CAS  Google Scholar 

  • Sleeter BM, Marvin DC, Richard Cameron D, Selmants PC, Westerling L, Kreitler J, Daniel CJ, Liu J, Wilson TS. 2019. Effects of 21st century climate, land use, and disturbances on ecosystem carbon balance in California. Glob Change Biol 25:3334–53.

    Article  Google Scholar 

  • Sokol NW, Bradford MA. 2019. Microbial formation of stable soil carbon is more efficient from belowground than aboveground input. Nat Geosci 12:46–53.

    Article  CAS  Google Scholar 

  • Sokol NW, Kuebbing SE, Karlsen-Ayala E, Bradford MA. 2019. Evidence for the primacy of living root inputs, not root or shoot litter, in forming soil organic carbon. New Phytol 221:233–46.

    Article  CAS  PubMed  Google Scholar 

  • Striker GG, Insaust P, Grimoldi AA, Vega AS. 2007. Trade-off between root porosity and mechanical strength in species with different types of aerenchyma. Plant Cell Environ 30:580–9.

    Article  CAS  PubMed  Google Scholar 

  • Sun DS, Wesche K, Chen DD, Zhang SH, Wu GL, Du GZ, Comerford NB. 2011. Grazing depresses soil carbon storage through changing plant biomass and composition in a Tibetan alpine meadow. Plant Soil Environ 57:271–8.

    Article  CAS  Google Scholar 

  • Torn MS, Trumbore SE, Chadwick OA, Vitousek PM, Hendricks DM. 1997. Mineral control of soil organic carbon storage and turnover. Nature 389:170–3.

    Article  CAS  Google Scholar 

  • Trumbore SE, Bubier JL, Harden JW, Crill PM. 1999. Carbon cycling in boreal wetlands: a comparison of three approaches. J Geophys Res 104:673–82.

    Article  Google Scholar 

  • van Vuuren DP, Stehfest E, Gernaat DEHJ, Van Den Berg M, Bijl DL, De Boer HS, Daioglou V, Doelman JC, Edelenbosch OY, Harmsen M, Hof AF, Van Sluisveld MAE. 2018. Alternative pathways to the 1.5 °C target reduce the need for negative emission technologies. Nat Clim Change 8:391–7.

    Article  Google Scholar 

  • Weixelman DA, Hill B, Cooper DJ, Berlow EL, Viers JH, Purdy SE, Merrill AG, Gross SE. 2011. Meadow hydrogeomorphic types for the Sierra Nevada and Southern Cascades, CA. USDA For Serv. pp 1–39.

  • Whiting GJ, Chanton JP. 2001. Greenhouse carbon balance of wetlands: methane emission versus carbon sequestration. Tellus 53B:521–8.

    CAS  Google Scholar 

  • Wood SH. 1975. Holocene stratigraphy and chronology of mountain meadows, Sierra Nevada, California.

  • Woodwell GM, Whittaker RH. 1968. Primary production in terrestrial ecosystems. Am Zool 8:19–30.

    Article  Google Scholar 

  • Yu H, Luedeling E, Xu J. 2010. Winter and spring warming result in delayed spring phenology on the Tibetan Plateau. Proc Natl Acad Sci 107:22151–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang Z, Zimmermann NE, Stenke A, Li X, Hodson EL, Zhu G, Huang C, Poulter B. 2017. Emerging role of wetland methane emissions in driving 21st century climate change. Proc Natl Acad Sci 114:9647–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank the many field and laboratory assistants who helped with the collection and processing of the field data. The California Department of Fish and Wildlife funded this work (P1496002, P1496004, P1496008, P1496009). B.W.S acknowledges additional support from the Bella Vista Foundation, the United States Department of Agriculture, and the Nevada Agricultural Experiment Station.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cody C. Reed.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Author Contributions

CR, AM, LK, MO, SH and BS collected field data and conducted laboratory analyses; CR, BS, SH and PV conducted the pulse-labeling experiment; CR and BS conducted statistical analyses; AM, SH, BS and MD provided technical coordination among project partners; MD, BC, RH, MO, JW, SS, AM and BS obtained funding and landowner permission; CR wrote the manuscript with assistance from BS and substantial input from all authors.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 6421 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Reed, C.C., Merrill, A.G., Drew, W.M. et al. Montane Meadows: A Soil Carbon Sink or Source?. Ecosystems 24, 1125–1141 (2021). https://doi.org/10.1007/s10021-020-00572-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10021-020-00572-x

Keywords

Navigation