Skip to main content

Advertisement

Log in

Review of Intravenous and Subcutaneous Electronic Glucose Management Systems for Inpatient Glycemic Control

  • Hospital Management of Diabetes (A Wallia and J Seley, Section Editors)
  • Published:
Current Diabetes Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

The goal of this review is to summarize current literature on electronic glucose management systems (eGMS) and discuss their benefits and disadvantages in the inpatient setting.

Recent Findings

We review different versions of commercially available eGMS: Glucommander™ (Glytec, Greenville, SC), EndoToolR (MD Scientific LLC, Charlotte, NC), GlucoStabilizer™ (Medical Decision Network, Charlottesville, VA), GlucoCare™ (Pronia Medical Systems, KY), and discuss advantages such as reducing rates of hypoglycemia, hyperglycemia, and glycemic variability. In addition, eCGMs offer a uniform standard of care and may improve workflows across institutions as well reduce barriers.

Summary

Despite ample literature on intravenous (IV) versions of eGMS, there is little published research on subcutaneous (SQ) insulin guidance. Although use of eGMS requires extensive training and institution-wide adoption, time spent on diabetes management is better facilitated by their use.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance

  1. American Diabetes Association. Diabetes Care in the Hospital: Standards of Medical Care in Diabetes 2020. Diabetes Care. 2020;43:S193–202.

  2. Umpierrez GE, Isaacs SD, Bazargan N, You X, Thaler LM, Kitabchi AE. Hyperglycemia: an independent marker of in-hospital mortality in patients with undiagnosed diabetes. J Clin Endocrinol Metab. 2002;87:978–82.

    CAS  PubMed  Google Scholar 

  3. Van den Bergh G, Wouters P, Weekers F, Verwaest C, Bruyninckx F, Schetz M, et al. Intensive insulin therapy in critically ill patients. N Engl J Med. 2001;345(19):1359–67.

    Google Scholar 

  4. NICE-SUGAR Study Investigators. Hypoglycemia and risk of death in critically ill patients. N Engl J Med. 2012;367:1108–18.

    Google Scholar 

  5. Krinsley JS, Grover A. Severe hypoglycemia in critically ill patients: risk factors and outcomes. Crit Care Med. 2007;35(10):2262–7.

    PubMed  Google Scholar 

  6. Goldberg PA, Siegel MD, Sherwin RS, Halickman JI, Lee M, Bailey VA, et al. Implementation of a safe and effective insulin infusion protocol in a medical intensive care unit. Diabetes Care. 2004;27(2):461–7.

    CAS  PubMed  Google Scholar 

  7. Bagshaw SM, Bellomo R, Jacka MJ, Egi M, Hart GK, George C, et al. Impact of early hypoglycemia and blood glucose variability on outcome in critical illness. Crit Care. 2009;13(3):R91.

    PubMed  PubMed Central  Google Scholar 

  8. Egi M, Bellomo R, Stachowski E, French CJ, Hart G. Variability of blood glucose concentration and short-term mortality in critically ill patients. Anesthesiology. 2006;105(2):244–52.

    CAS  PubMed  Google Scholar 

  9. White NH, Skor D, Santiago JV. Practical closed-loop insulin delivery. A system for the maintenance of overnight euglycemia and the calculation of basal insulin requirements in insulin-dependent diabetics. Ann Intern Med. 1982;97(2):210–3.

    CAS  PubMed  Google Scholar 

  10. Davidson PC, Steed RD, Bode BW. Glucommander: a computer directed insulin system shown to be safe, simple and effective in 120,618 h of operation. Diabetes Care. 2005;28(10):2418–23.

    CAS  PubMed  Google Scholar 

  11. Newton CA, Smiley D, Bode BW, Kitabchi AE, Davidson PC, Jacobs S, et al. A comparison study of continuous insulin infusion protocols in the medical intensive care unit: computer-guided vs. standard column based algorithms. J Hosp Med. 2010;5(8):432–7.

    PubMed  PubMed Central  Google Scholar 

  12. Rabinovich M, Grahl J, Durr E, Gayed R, Chester K, McFarland R, et al. Risk of hypoglycemia during insulin infusion directed by paper protocol versus electronic glycemic management system in critically ill patients at a large academic medical center. J Diabetes Sci Technol. 2018;12(1):47–52.

    PubMed  Google Scholar 

  13. Ullal J, McFarland R, Bachand M, Aloi J. Use of a computer-based insulin infusion algorithm to treat diabetic ketoacidosis in the emergency department. Diabetes Technol Ther. 2016;18(2):100–3.

    CAS  PubMed  Google Scholar 

  14. Ullal J, Aloi JA, Reyes-Umpierrez D, Pasquel FJ, McFarland R, Rabinovich M, et al. Comparison of computer-guided versus standard insulin infusion regimens in patients with diabetic ketoacidosis. J Diabetes Sci Technol. 2018;12(1):39–46.

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Desai D, Mehta D, Mathiyas P, Menon G, Schubart UK. Health care utilization and burden of diabetic ketoacidosis in the U.S. over the past decade: a nationwide analysis. Diabetes Care. 2018;41(8):1631–8.

    PubMed  Google Scholar 

  16. Umpierrez G, Cardona S, Pasquel F, Jacobs S, Peng L, Unigwe M, et al. Randomized controlled trial of intensive versus conservative glucose control in patients undergoing coronary artery bypass graft surgery: GLUCO-CABG trial. Diabetes Care. 2015;38:1665–72.

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Cardona S, Pasquel FJ, Fayfman M, Peng L, Jacobs S, Vellanki P, et al. Hospitalization costs and clinical outcomes in CABG patients treated with intensive insulin therapy. J Diabetes Complicat. 2017;31(4):742–7.

    Google Scholar 

  18. “Diabetes facts and figures.” International Diabetes Federation 2020 [Cited May 3, 2020]. Available from https://www.idf.org/aboutdiabetes/what-is-diabetes/facts-figures.html

  19. Hammer MJ, Casper C, Gooley TA, O’Donnell PV, Boeckh M, Hirsch IB. The contribution of malglycemia to mortality among allogeneic hematopoietic cell transplant recipients. Biol Blood Marrow Transplant. 2009;15(3):344–51.

    PubMed  PubMed Central  Google Scholar 

  20. Gebremedhin E, Behrendt CE, Nakamura R, Parker P, Salehian B. Severe hyperglycemia immediately after allogeneic hematopoietic stem-cell transplantation is predictive of acute graft-versus-host disease. Inflammation. 2013;36(1):177–85.

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Espina C, Jenkins I, Taylor L, Farah R, Cho E, Epworth J, et al. Blood glucose control using a computer-guided glucose management system in allogeneic hematopoietic cell transplant recipients. Bone Marrow Transplant. 2016;51(7):973–9.

    CAS  PubMed  Google Scholar 

  22. Phillips VL, Byrd AL, Adeel S, Peng L, Smiley DD, Umpierrez GE. A comparison of inpatient cost per day in general surgery patients with type 2 diabetes treated with basal-bolus versus sliding scale insulin regimens. Pharmacoecon Open. 2017;1(2):109–15.

    PubMed  PubMed Central  Google Scholar 

  23. Aloi J, Bode BW, Ullal J, Chidester P, McFarland RS, Bedingfield AE, et al. Comparison of an electronic glycemic management system versus provider-managed subcutaneous basal bolus insulin therapy in the hospital setting. J Diabetes Sci Technol. 2017;11(1):12–6.

    PubMed  Google Scholar 

  24. • Newsom R, Patty C, Camarena E, Sawyer R, McFarland R, Gray T, et al. Safely converting an entire academic medical center from sliding scale to basal bolus insulin via implementation of the eglycemic management system. J Diabetes Sci Technol. 2018;12(1):53–9 This study showed that the eGMS SQ version improved hyper and hypoglycemia, time in range, and reduction in length of stay, and demonstrated best practices for ordering appropriate basal/bolus insulin.

    PubMed  Google Scholar 

  25. Mann EA, Jones JA, Wolf SE, Wade CE. Computer decision support software safely improves glycemic control in the burn intensive care unit: a randomized controlled clinical study. J Burn Care Res. 2011;32(2):246–55.

    PubMed  PubMed Central  Google Scholar 

  26. Fogel SL, Baker CC. Effects of computerized decision support systems on blood glucose regulation in critically ill surgical patients. J Aml Coll Surg. 2013;216(4):828–33.

    Google Scholar 

  27. John SM, Waters KL, Jivani K. Evaluating the implementation of the EndoTool glycemic control software system. Diabetes Spectr. 2018;31(1):26–30.

    PubMed  PubMed Central  Google Scholar 

  28. • Tanenberg RJ, Hardee S, Rothermel C, Drake AJ. Use of computer-guided glucose management system to improve glycemic control and address national quality measures: a 7-year, retrospective observational study at a tertiary care teaching hospital. Endocr Pract. 2017;23(3):331–41 This study showed marked improvement in quality of care with eGMS, leading to reduced hypoglycemia year by year despite doubling the volume of enrolled patients, rapid time to BG control, low glucose excursions, and low glycemic variability.

    PubMed  Google Scholar 

  29. Magee M. Improving IV insulin administration in a community hospital. J Vis Exp. 2012;64:1–8.

    Google Scholar 

  30. Dumont C, Bourguignon C. Effect of a computerized insulin dose calculator on the process of glycemic control. Am J Crit Care. 2012;21(2):106–15.

    PubMed  Google Scholar 

  31. Juneja R, Roudebush C, Kumar N, Macy A, Golas A, Wall D, et al. Utilization of a computerized intravenous insulin infusion program to control blood glucose in the intensive care unit. Diabetes Technol Ther. 2007;9(3):232–40.

    CAS  PubMed  Google Scholar 

  32. Juneja R, Roudebush CP, Nasraway SA, Golas AA, Jacobi J, Carroll J, et al. Computerized intensive insulin dosing can mitigate hypoglycemia and achieve tight glycemic control when glucose measurement is performed frequently and on time. Crit Care. 2009;13(R163):1–10.

    Google Scholar 

  33. Wiener RS, Wiener DC, Larson RJ. Benefits and risks of tight glucose control in critically ill adults: a meta-analysis. JAMA. 2008;300(8):933–44.

    CAS  PubMed  Google Scholar 

  34. Saur NM, Kongable GL, Holewinski S, O’Brien K, Nasraway SA. Software-guided insulin dosing: tight glycemic control and decreased glycemic derangements in critically ill patients. Mayo Clin Proc. 2013;88(9):920–9.

    CAS  PubMed  Google Scholar 

  35. Dinglas C, Muscat J, Adams T, Peragallo-Dittko V, Vintzileos A, Heo HJ. Software-guided insulin dosing improves intrapartum glycemic management in women with diabetes mellitus. Am J Obstet Gynecol. 2018;219(2):191.e1–6.

    Google Scholar 

  36. Gestational Diabetes Mellitus Practice Bulletin 190. American College of Obstetricians and Gynecologists 2018 [cited May 3, 2020]. Available from https://www.acog.org/clinical/clinical-guidance/practice-bulletin/articles/2018/02/gestational-diabetes-mellitus

  37. Johnston KC, Bruno A, Pauls Q, Hall CE, Barrett KM, Barsan W, et al. Intensive vs standard treatment of hyperglycemia and functional outcome in patients with acute ischemic strok: the SHINE randomized clinical trial. JAMA. 2019;322(4):326–35.

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Juneja R, Golas AA, Caroll J, Nelson D, Abad VJ, Roudebush CP, et al. Safety and effectiveness of a computerized subcutaneous insulin program to treat inpatient hyperglycemia. J Diabetes Sci Technol. 2008;2(3):384–91.

    PubMed  PubMed Central  Google Scholar 

  39. Goldberg PA, Siegel MD, Sherwin RS, Halickman JI, Lee M, Bailey VA, et al. Implementation of a safe and effective insulin infusion protocol in a medical intensive care unit. Diabetes Care. 2004;27(2):461–7.

    CAS  PubMed  Google Scholar 

  40. Marvin MR, Inzucchi SE, Besterman BJ. Computerization of the Yale insulin infusion protocol and potential insights into causes of hypoglycemia with intravenous insulin. Diabetes Technol Ther. 2013;15(3):246–52.

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Marvin MR, Inzucchi SE, Besterman BJ. Minimization of hypoglycemia as an adverse event during insulin infusion: further refinement of the Yale protocol. Diabetes Technol Ther. 2016;18(8):480–6.

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Jacobi J, Bircher N, Krinsley J, Agus M, Braithwaite SS, Deutschman C, et al. Guidelines for the use of an insulin infusion for the management of hyperglycemia in critically ill patients. Crit Care Med. 2012;40(12):3251–76.

    PubMed  Google Scholar 

  43. Kulasa K. Computer guided insulin dosing. Presented at Diabetes Technology Society Virtual Hospital Diabetes Meeting, 2020.

  44. Ullal J, Aloi JA. Subcutaneous insulin dosing calculators for inpatient glucose control. Curr Diab Rep. 2019;19(11):120.

    PubMed  Google Scholar 

  45. Maynard G, Kulasa K, Ramos P, Childers D, Clay B, Sebasky M, et al. Impact of a hypoglycemia reduction bundle and a systems approach to inpatient glycemic management. Endocr Pract. 2015;21(4):355–67.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Preethika S. Ekanayake.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflicts of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Hospital Management of Diabetes

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ekanayake, P.S., Juang, P.S. & Kulasa, K. Review of Intravenous and Subcutaneous Electronic Glucose Management Systems for Inpatient Glycemic Control. Curr Diab Rep 20, 68 (2020). https://doi.org/10.1007/s11892-020-01364-2

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11892-020-01364-2

Keywords

Navigation